DOI QR코드

DOI QR Code

Comparison of the Stability Constants of Cd(II)-, Cu(II)-, and Pb(II)-Humate Complexes

  • Choi, Se-Young (Department of Chemistry, Korea Advanced Institute of Science & Technology) ;
  • Moon, Hi-Chung (Department of Chemistry, Korea Advanced Institute of Science & Technology) ;
  • Jun, Song-Hui (Department of Chemistry, Korea Advanced Institute of Science & Technology) ;
  • Chung, Kun-Ho (Department of Chemistry, Korea Advanced Institute of Science & Technology)
  • Published : 1994.07.20

Abstract

A comparative investigation of the complexations of divalent metal ions (Cd, Cu, and Pb) by a well characterized soil humic acid (HA) from Okchun Metamorphic Belt was carried out in 0.05 M $KNO_3$ and pH of 4.5 using ion selective electrodes. A continuous distribution model based on the Scatchard Plot was used to determine the stability constants, because the constants obtained by this modeling technique takes the variations in binding energies into consideration without regards to the manner in which M(II) ion is bound on HA. The mean value of log $K_i$ were $4.05{\pm}0.60,\;4.92{\pm}0.36,\;and\;5.63{\pm}0.34\;{\ell}\;mol^{-1}$ for Cd(II)-, Pb(II), and Cu(II)-humate complexes respectively. The values of intrinsic constant (log $K_{int}$; binding at strongest site) were $7.12{\pm}0.30,\;6.59{\pm}0.32,\;and5.07{\pm}0.56\;{\ell}\; mol^{-1}$ in the order Cu(II) > Pb(II) > Cd(II) ion.

Keywords

References

  1. ICCET Series E no.No. 1 Moon, H.;Thornton, I.
  2. Geochim. Cosmochim Acta v.44 Saar, R. T.;Weber, J. H.
  3. Water Res. v.18 Sterritt, R. M.;Lester, J. N.
  4. Geochim. Cosmochim Acta v.54 Buffle, J.;Altmann, R. S.;Filella, M.;Tessier, A.
  5. Soil Sci. v.155 Stevenson, F. J.;Fitch, A.;Brar, M. S.
  6. Bull. Korean Chem. Soc. v.14 Lee, M. H.;Choi, S. Y.;Chung, K. H.;Moon, H.
  7. Soil Sci. v.123 Stevenson, F. J.
  8. Sci. Total Environ. v.64 Linder, P. W.;Murray, K.
  9. Soil Sci. Soc. Am. J. v.48 Fitch, A.;Stevenson, F. J.
  10. Geochim. Cosmochim. Acta v.48 Perdue, E. M.;Reuter, J. H.;Parrish, R. S.
  11. Anal. Chem. v.62 Susetyo, W.;Dobbs, J. C.;Carreira L. A.;Azarraga, L. V.;Grimm, D. M.
  12. Humic substances in soil, sediment, and water Aiken, G. R.;McKnight, D. M.;Wershaw, R. L.;MacCarthy, P.(Eds)
  13. Master Thesis, Korea Advanced Institute of Science and Technology Shin, H. S.
  14. Soil. Sci. Soc. Am. J. v.55 Stevenson, F. J.;Chen, J.
  15. Aquatic and terrestrial humic materials Perdue, L. M.;Lytle, C. R.
  16. Bull. Korean Chem. Soc. v.14 Lee, M. H.;Choi, S. Y.;Moon, H.
  17. Environ. Toxicol Chem. v.5 Giesy, J. P.;Albert, J. J.;Evans, D. W.

Cited by

  1. Membrane filtration studies of aquatic humic substances and their metal species: a concise overview. Part 2. Evaluation of conditional stability constants by using ultrafiltration vol.48, pp.2, 1999, https://doi.org/10.1016/s0039-9140(98)00249-5
  2. Ultrafiltration and determination of Zn– and Cu–humic substances complexes stability constants vol.53, pp.6, 1994, https://doi.org/10.1016/s0039-9140(00)00492-6
  3. Complexation of Lead in Model Solutions of Humic Acid: Heterogeneity and Effects of Competition with Copper, Nickel, and Zinc vol.3, pp.4, 1994, https://doi.org/10.1071/en06022
  4. Potentiometric investigations on the interaction of humic acid with Cu(II) and Eu(III) ions vol.94, pp.9, 1994, https://doi.org/10.1524/ract.2006.94.9-11.549
  5. In vitro toxicology assessment of cadmium bioavailability on primary porcine oviductal epithelial cells vol.27, pp.1, 1994, https://doi.org/10.1016/j.etap.2008.08.012
  6. Studies on the interaction of olive cake and its hydrophylic extracts with polyvalent metal ions (Cu(II), Eu(III)) in aqueous solutions vol.166, pp.2, 1994, https://doi.org/10.1016/j.jhazmat.2008.12.016