• Title/Summary/Keyword: sputtering gas pressure

Search Result 320, Processing Time 0.038 seconds

Preparation of Co-Cr-Ta recording layers by FTS (FIS에 의한 Co-Cr-Ta 기록층의 제작)

  • 공석현;손인환;박창옥;김재환;김경환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.578-581
    • /
    • 1999
  • The Co-Cr-Ta films are one of the most suitable candidates for perpendicular magnetic recording media. The facing targets sputtering(FTS) system has a advantage of preparing films over a wide range of working gas pressure on plasma-free substrates. In this study, we investigated the effect underlayers on the growths layers of Co-Cr-Ta recording layers. The Co-Cr-Ta/Ti(CoCr) double layers were deposited with sputter gas pressure$(P_N, 0.3-1mTorr)$ by using FTS apparatus at temperature of$40^{\circ}C~-300^{\circ}C$, respectively. Crystallographic and magnetic characteristics were evaluated by x-ray diffractometry(XRD) and vibrating sample magnetometer(VSM), respectively.

  • PDF

Crystal Orientation of Thin Films Prepared by Facing Targets Sputtering (대향타겟스퍼터링으로 제작된 박막의 결정 배향성)

  • 김경환;손인환;송기봉;신촌수양;중천무수;직강정언
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.4
    • /
    • pp.217-222
    • /
    • 1998
  • The Facing Targets Sputtering(FTS) system has several advantages for preparing films over a wide range of working gas pressure on plasma-free substrates. Co-Cr thin films seem to be one of the most promising media for perpendicular magnetic recording system. In this study, the capabillities of the system fordepositing C0-Cr films have been investigated. Under various Ar gas pressure, films with morphologically dense microstructure and good c-axis orientation were deposited, even when the incident angle $\psi_x$ of sputtered part icles to the film plane was below abount $50^{\circ}C$. this may imply that the shadowing effect by obique incidence of particle can be compensated by rapid surface diffusion owing to the high kinetic energy of particles arriving at the growing film. It has been confirmed that the FTS system is very useful for perparing Co-Cr thin films recorging media.

  • PDF

Electrical Characteristics of ZnO Piezo-electric Thin film for SAW filter (SAW 필터용 ZnO 압전 박막의 전기적 특성)

  • Lee, Dong-Yoon;Yoon, Seok-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.10
    • /
    • pp.909-916
    • /
    • 2005
  • The structural and electrical property of RF magnetron sputtered ZnO thin film have been studied as a function of RF power, substrate temperature, oxygen/argon gas ratio and film thickness at constant sputtering power, sputtering working pressure and target-substrate distance. To analyze a crystallo-graphic properties of the films, $\theta$/2$\theta$ mode X-ray diffraction, SEM, and AFM analyses. C-axis preferred orientation, resistivity and surface roughness highly depended on oxygen/argon gas ratio. The resistivity of ZnO thin film(6000 ${\AA}$) rapidly increased with increasing oxygen ratio and the resistivity value of $9 {\ast} 10^7 {\Omega}cm$ was obtained at a working pressure of 10 mTorr with the same oxygen/argon gas ratio. The surface roughness was also improved with increasing oxygen ratio and the ZnO films deposited with the same oxygen/argon gas ratio showed the excellent roughness value of 28.7 ${\AA}$. With increase of the substrate temperature, The C-axis preferred orientation of ZnO thin film increases and the resistivity decreases due to deviation from the stoichiometric ZnO due to oxygen deficiency.

Effects of Oxygen Partial Pressure on ITO Thin Films PrePared by Reactive dc Magenetron Sputtering (반응성 dc 미그네트론 스퍼링법으로 제조된 IPO박막에 미치는 산소분압의 영향)

  • 신성호;신재혁;박광자;김현우
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.3
    • /
    • pp.171-176
    • /
    • 1998
  • Transparent conducting ITO (Indium Tin Oxide) thin films were prepared on soda lime glass by reactive dc magnetron sputtering mothod. The maaterial properties were measured by the X-ray diffraction meter (XRD) and atomic force microscopy (AFM) scanning. As a resuIts, the (400) park for $O_2 gas rate 2% grows uniquely as the preferred orientaon. However, the (400) peak exists at $O_2 gas rate 5% as well as the (222) peak appears abruptly as the main orietation. Both <100> and <111> grain alignments are consisted simultaneously in the XRE pattern of ITO thin films. The electrical charcteristics were esimated by the electrical resistivity, optical transmission, and Hall mobillty, ect. The resistivity of ITO thin film deposited at 4cm from the substrate center is increased from $2\times10^-4$ to $8\times10^-4\Omega$cm as a function of $O_2$ gas pressure (0~5%). The optical transmission curves with a rising of $O_2$ gas rate become shifted into longer wavelength range.

  • PDF

Preparing of the AI electrode for OLED by Sputtering Methode (스퍼터링법을 이용한 OLED용 Al 전극의 제작)

  • Kim, Kyung-Hwan;Keum, Min-Jong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.72-75
    • /
    • 2005
  • In this study Al electrode for OLED was deposited by FTS(Facing Targets Sputtering) system which can deposit thin films with low substrate damage. The Al thin films were deposited on the cell(LiF/EML/HTL/Bottom electrode) as a function of working gas such as Ar, Kr or mixed gas. Also Al thin films were prepared with working gas pressure (1, 6 mTorr ). The film thickness and I-V curve of Al/cell were evaluated by $\alpha$-step and semiconductor parameter (HP4156A) measurement. In the results, when Al thin film were deposited using pure Ar gas, the turn-on voltage of Al/cell was about 11[V]. And the turn-on voltage of Al/cell can be decrease to about 7[V].

  • PDF

Optical Characteristics of Oxygen-doped ZnTe Thin Films Deposited by Magnetron Sputtering Method

  • Kim, Seon-Pil;Pak, Sang-Woo;Kim, Eun-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.253-253
    • /
    • 2011
  • ZnTe semiconductor is very attractive a material for optoelectronic devices in the visible green spectral region because of it has direct bandgap of 2.26 eV. The prototypes of ZnTe light emitting diodes (LEDs) have been reported [1], showing that their green emission peak closely matches the most sensitive region of the human eye. The optoelectronic properties of ZnTe:O film allow to expect a large optical gain in the intermediate emission band, which emission band lies about 0.4-0.6 eV below the conduction band of ZnTe [2]. So, the ZnTe system is useful for the production of high-efficiency multi-junction solar cells [2,3]. In this work, the ZnTe:O thin films were deposited on Al2O3 substrates by using the radio frequency magnetron sputtering system. Three sets of samples were prepared using argon and oxygen as the sputtering gas. The deposition chamber was pre-pumped down to a base pressure of 10-7 Torr before introducing gas. The deposition pressure was fixed at 10-3 Torr throughout this work. During the ZnTe deposition, the substrate temperature was 300 oC. The optical properties were also investigated by using the ultraviolte-visible (UV-Vis) spectrophotometer.

  • PDF

Study of Chromium thin films deposited by DC magnetron sputtering under glancing angle deposition at low working pressure

  • Bae, Kwang-Jin;Ju, Jae-Hoon;Cho, Young-Rae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.181.2-181.2
    • /
    • 2015
  • Sputtering is one of the most popular physical deposition methods due to their versatility and reproducibility. Synthesis of Cr thin films by DC magnetron sputtering using glancing angle deposition (GLAD) has been reported. Chromium thin films have been prepared at two different working pressure($2.0{\times}10-2$, 30, $3.3{\times}10-3torr$) on Si-wafer substrate using magnetron sputtering with glancing angle deposition (GLAD) technique. The thickness of Cr thin films on the substrate was adjusted about 1 mm. The electrical property was measured by four-point probe method. For the measurement of density in the films, an X-ray reflectivity (XRR) was carried out. The sheet resistance and column angle increased with the increase of glancing angle. However, nanohardness and density of Cr thin films decreased as the glancing angle increased. The measured density for the Cr thin films decreased from 6.1 to 3.8 g/cc as the glancing angle increased from $0^{\circ}$ to $90^{\circ}$ degree. The low density of Cr thin films is resulted from the isolated columnar structure of samples. The evolution of the isolated columnar structure was enhanced at the conditions of low sputter pressure and high glancing angle. This GLAD technique can be potentially applied to the synthesis of thin films requiring porous and uniform coating such as thin film catalysts or gas sensors.

  • PDF

Fabrication of Low Temperature Poly-Silicon by Inductively Coupled Plasma Assisted Magnetron Sputtering (유도결합 플라즈마-마그네트론 스퍼터링 방법을 이용한 저온 폴리실리콘 제조)

  • 유근철;박보환;주정훈;이정중
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.3
    • /
    • pp.164-168
    • /
    • 2004
  • Polycrystalline silicon thin films were deposited by inductively coupled plasma (ICP) assisted magnetron sputtering using a gas mixture of Ar and $H_2$ on a glass substrate at $250^{\circ}C$. At constant Ar mass flow rate of 10 sccm, the working pressure was changed between 10mTorr and 70mTorr with changing $H_2$ flow rate. The effects of RF power applied to ICP coil and $Ar/H_2$ gas mixing ratio on the properties of the deposited Si films were investigated. The crystallinity was evaluated by both X-ray diffraction and Raman spectroscopy. From the results of Raman spectroscopy, the crystallinity was improved as hydrogen mixing ratio was increased up to$ Ar/H_2$=10/16 sccm; the maximum crystalline fraction was 74% at this condition. When RF power applied to ICP coil was increased, the crystallinity was also increased around 78%. In order to investigate the surface roughness of the deposited films, Atomic Force Microscopy was used.

I-V properties of OLED with deposition conditions of ITO thin films (ITO 박막의 제작 조건에 따른 OLED의 I-V 특성)

  • Keum, M.J.;Kim, H.W.;Cho, B.J.;Kim, H.K.;Kim, K.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.434-435
    • /
    • 2005
  • In this work, the ITO thin films were prepared by FTS (Facing Targets Sputtering) system under different sputtering conditions which were varying $O_2$ gas flow, input current and working gas pressure. As a function of sputtering conditions, electrical and optical properties of prepared ITO thin films were measured. The electrical characteristics, surface roughness and transmittance of the ITO thin films were evaluated by Hall Effect Measurement, AFM, and UV-VIS spectrometer respectively. In addition, I-V properties of OLED cells were measured by 4156A(HP).

  • PDF