• Title/Summary/Keyword: spun yarn

Search Result 72, Processing Time 0.026 seconds

A Study on the Possibility of Using Fire-Retardant Working Cloth Made from Silicon Carbide (SiC) Composite Spun Yarns (Silicon Carbide (SiC) 복합방적사로부터 제조된 원단의 방화복 활용 가능성에 관한 연구)

  • Kang, Hyun-Ju;Kang, Gun-Woong;Kwon, Oh-Hoon;Kwon, Hyeon-Myoung;Hwang, Ye-Eun;Jeon, Hye-Ji;Joo, Jong-Hyun;Park, Yong-Wan
    • Science of Emotion and Sensibility
    • /
    • v.24 no.4
    • /
    • pp.149-156
    • /
    • 2021
  • The mechanical properties of a woven fabric made of SiC (silicon carbide) fibers were determined in this study using the KES-FB system. The woven fabric is used in high heat settings above 1500℃. Composite spun yarns were used to create SiC fibers. By analyzing the wearing properties, we studied the prospect of using the textiles as fire-retardant work clothes. Mechanical properties determine the wearing attributes. Therefore, the tensile linearity (LT), tensile resilience (RT), and shear stiffness (G) values of the fabric varied according to the yarn type (filament or spun yarn). The thickness, weight per square meter, and density of the fabric were found to have an effect on the shear hysteresis (2HG) and compression resilience (RC) values. In terms of wearable clothing qualities, the fabric qualities of the SiC composite yarn demonstrated the highest ratio of compressive energy to thickness (WC/T), which indicates bulkiness. The fabric manufactured from SiC composite yarns passed the KFI criteria for carbonation length and cumulative flame time in the flame-retardant test. Therefore, we discovered that the material can be used as a fire-resistant work cloth.

Analysis and Compression of Spun-yarn Density Profiles using Adaptive Wavelets

  • Kim, Joo-Yong
    • Textile Coloration and Finishing
    • /
    • v.18 no.5 s.90
    • /
    • pp.88-93
    • /
    • 2006
  • A data compression system has been developed by combining adaptive wavelets and optimization technique. The adaptive wavelets were made by optimizing the coefficients of the wavelet matrix. The optimization procedure has been performed by criteria of minimizing the reconstruction error. The resulting adaptive basis outperformed such conventional basis as Daubechies-5 by 5-10%. It was also shown that the yarn density profiles could be compressed by over 95% without a significant loss of information.

Effect of Blend Ratio and Twist Structure on the Compressional Properties of 2-Folded Spun Yarn (섬유혼합률과 실의 꼬임구조가 2합 방적사의 압축특성에 미치는 영향)

  • Kim, Seung Jin;Kim, Han Sung;Lee, Hee Jun;Koo, Ja Gil;Song, Je Soo
    • Textile Coloration and Finishing
    • /
    • v.8 no.6
    • /
    • pp.55-64
    • /
    • 1996
  • The compression properties of the 2 folded yams such as compression linearity, compression resilience, and compression work with various wool/polyester blend ratios and with single and 2-folded yarn twists under various degrees of twisting were studied for analyzing twist characteristics, inter and intra frictional effects. A variation of single and 2-folded yarn twists was analysed in their twist structure. This structural analysis was discussed with various wool/polyester blend ratios and various single and 2-folded yarn twists.

  • PDF

A Study on the Physical Properties of Heat resistance and Cut resistance of Coating Gloves for Work

  • Pyo, Kyeong-Deok;Jung, Eugene;Park, Cha-Cheol
    • Elastomers and Composites
    • /
    • v.54 no.2
    • /
    • pp.91-96
    • /
    • 2019
  • The purpose of this study was to examine the effect of different yarn twisting methods on physical properties. Plain single jersey structured fabrics were knitted from Kevlar yarn, and from Kevlar/HPPE, and from Kevlar/Basalt fiber, and from Kevlar/Glass fiber and Kevlar/Stainless steel fiber blended and core-spun yarns. and then, The fabrics were coated NBR Latex. The physical properties, including tear strength, modulus, degree of penetration, heat resistance, and cut resistance of the knitted fabrics were investigated and compared. Kevlar/HPPE blended yarn fabrics recorded the highest heat resistance (13 Sec.). and Kevlar/HPPE blended yarn fabrics had good cut resistance (Cut Level 4).

Studies on Reduction of Yarn Hairiness by Nozzles in Ring Spinning and Winding by Airflow Simulation

  • Rengasamy R. S.;Patnaik Asis;Punekar Hemant
    • Fibers and Polymers
    • /
    • v.7 no.3
    • /
    • pp.317-322
    • /
    • 2006
  • Reduction of yam hairiness by nozzles in ring spinning and winding is a new approach. Simulation of the airflow pattern inside the nozzles provides useful information about actual mechanism of hairiness reduction. The swirling air current inside the nozzles is capable of wrapping the protruding hairs around the yam body, thereby reducing yam hairiness. Since production rate of winding is very high and the process itself increases yarn hairiness any method to reduce the hairiness of yarns at this stage is a novel approach. A CFD (computational fluid dynamics) model has been developed to simulate the airflow pattern inside the nozzles using Fluent 6.1 software. In this study, both S- and Z-type nozzles having an axial angle of 500 and diameter of 2.2 mm were used for simulation studies. To create a swirling effect, four air holes of 0.4 mm diameter are made tangential to the inner walls of the nozzles. S- and Z-twisted yams of 30 tex were spun with and without nozzles and were tested for hairiness, tensile and evenness properties. The total number of hairs equal to or exceeding 3 mm (i.e. the S3 values) for yam spun with nozzle is nearly 49-51 % less than that of ring yams in case of nozzle-ring spinning, and 15 % less in case of nozzle-winding, while both the yarn types show little difference in evenness and tensile properties. Upward airflow gives best results in terms of hairiness reduction for nozzle-ring and nozzle wound yams compared to ring yarns. Yarn passing through the centre of the nozzle shows maximum reduction in S3 values.

Studies on Interlining -The change of the physical properties based on the weight polyethylene resin of the fusible interlining- (심지에 관한 연구(I) -접착심지의 polyethylene 수지량에 따른 물성변화-)

  • Cho Kyung Aee;Yoo Duk Whan
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.6 no.1
    • /
    • pp.17-26
    • /
    • 1982
  • This article aims to determine the interrelation among exfoliation strength, the repeated laundry number, the coefficient of friction and the cover factor about the fusible interlining produced by using different amount resin. The practicality of stiffness and warmth of the fusible interling were examined. The results are summarized as follows: 1) As a factor that affecting the exfoliation strength of fusible interlining, the coefficient of friction and the cover factor about the fusible interlining produced by using different amount resin. (2) Regardless of the weight of the resin, the exfoliation strength of fusible interlining declined gradually as the repeated laundry number increased. This tendency arises much more in the case of the filament yarn fabric than in that of the spun yarn fabric. The stability of the exfoliation strength was better, regardless of the increase of the repeated laundry number, when the weight of the weight of the resin was 10 g/$m^2$. (3) The spun yarn fabric, which has more fuzz than the filament yarn fabric, is more suitable for the fabric of fusible interlining. The smaller the cover factor difference between the face cloth and the interlining cloth, the stronger the exfoliation strength. (4) When the stability of the shape is a necessary factor in the consumption of the fusible interlining, a resin weight of 20 g/$m^2$ is the most suitable; however when stiffness and warmth are necessary factors, a resin weight of 10 g/$m^2$ is the most suitable.

  • PDF

Analysis of a Spun-CNT Based X-ray Source

  • Kim, Hyun Suk;Castro, Edward Joseph D.;Hun, Choong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.639-639
    • /
    • 2013
  • In this research we report the significant contribution of the as-spun multi-walled carbon nanotube (MWCNT) on the x-ray images formation using a low tube voltage x-ray source. The MWCNT, which was used for the fabrication of the spun CNT, was grown using a microwave plasma-enhanced chemical vapor deposition machine. Electrical-optics simulation software was utilized to determine the electron field emission trajectory of the triode-structure-as-spun CNT-based x-ray source. It was shown that a significant amount of converging electrons hit the target anode producing a clear x-ray image. These x-ray images where produced at a small amount of anode current of 0.67 mA at a tube voltage of 5 kV with the gate voltage of 0 V. Also, comparisons of the radiographs at various exposure times of the sample where analyzed with and without an x-ray dose filter. Results showed that spatially-resolved images were formed using the as-spun CNT at a low tube voltage with a $54-{\mu}m$ Al x-ray filter. This study can be used for low-voltage medical applications.

  • PDF

Preparation of Rayon Filament based Woven Fabric and PCM Treatment for Developing Cool Touch Summer Clothing Material (여름철 냉감성 의류소재 개발을 위한 비스코스 레이온 중심의 직물 제조 및 PCM 가공)

  • Hong, Kyung Hwa
    • Fashion & Textile Research Journal
    • /
    • v.16 no.2
    • /
    • pp.326-332
    • /
    • 2014
  • To develop cool touch feeling fabrics for summer clothing material, it was manufactured several compositions of woven fabrics, having rayon multi-filament yarn (non-twisted) as warp and various kinds of yarn, such as viscose rayon multi-filament yarn (twisted), tencel$^{(R)}$ spun yarn, PET high absorbance quick dry filament yarn, and PET based rayon-like yarn, as weft. After preparing the fabrics, basic properties of the fabrics were investigated, such as air-permeability, tensile strength, absorption rate, drying rate, etc. Also, surface warm / cool sensations of the woven fabrics were assessed by Qmax Warm / Cool Touch Tester. It was observed that the fabrics composed of viscose rayon multi-filament yarn (warp) and PET high absorbance quick dry filament yarn (weft) showed excellent surface cool touch sensation-the highest Qmax value. This is because the fabric having flat shaped PET high absorbance quick dry filament shows the largest contact area with Qmax measuring plate. And, the fabric also showed superior high absorbance and quick dry property as expected. In addition, we treated phase change material (PCM) on the surface of the fabric composed of viscose rayon multi-filament yarn (warp) and PET high absorbance quick dry filament yarn(weft) to improve the cool touch feeling. However, the surface cool touch feeling was impaired by resin treated with PCM during the finishing process.

Effect of degumming on structure and mechanical properties of silk textile made with silk/polyurethane core-spun yarn

  • Bae, Yeon Su;Kim, Chun Woo;Bae, Do Gyu;Um, In Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.33 no.2
    • /
    • pp.132-137
    • /
    • 2016
  • Although silk textile shows excellent performance when used in clothing over a long period, its limited elongation and elasticity have restricted its extension to other textile and non-textile applications. In the present study, silk textile was produced using silk/polyurethane core-spun yarn and degummed to enhance its elongation and elasticity. The effects of degumming on the structure and mechanical properties of the silk textile were examined. Scanning electron microscopy observation revealed that the silk filaments became finer and more flexible with degumming, resulting in increased tangling of weft yarns and a highly shrunk textile structure in the weft direction. Although the strength of the degummed silk textile was decreased, its elongation greatly increased by 383% (a 16-fold increase) because of the degumming treatment. In particular, the elasticity of the silk textile was greatly improved. The silk textile exhibited ~30% reduction in the elongation after the second extension; however, the elongation almost did not change after 18 additional extension-recovery tests.