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Abstract— A data compression system has been developed by combining adaptive wavelets and optimization
technique. The adaptive wavelets were made by optimizing the coefficients of the wavelet matrix. The optimization
procedure has been performed by criteria of minimizing the reconstruction error. The resulting adaptive basis
outperformed such conventional basis as Daubechies-5 by 5 -10%. It was also shown that the yarn density profiles
could be compressed by over 95% without a significant loss of information.
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1. Introduction

For an on-line process control in spun yarn
production, large amount of data must be com-
pressed by discarding redundant information
while the data are being captured.

Although research in quality monitoring and
control system development has advanced over
the past twenty years, a reliable system has yet to
be developed mainly due to the high dimen-
sionality of the data producedl’z). In recent times,
some researchers have been focussing on works
for designing on-line data reduction system by
using stochastic analyses and wavelets® The
detection and identification of imperfections or
spinning faults during yarn manufacturing was
also possible under the monitoring scheme developed.
The use of wavelet transform is relatively good in
textiles. Although they have been used extensively
used in other fields such as mathematics and
electrical engineering where they have proved to
be a reliable tool for signal characterization and
compressions).

The results were quite successful in that it could
achieve a large amount of data reduction without

any significant loss of information”. In this paper,

a more improved data compression system will be
developed for monitoring spinning process by
using adaptive wavelet methodology.

2. Development of Process Dependent
Bases

For compact representation of a yarn density
signal, use of the right basis is one of the most
important factors. The performance of many
algorithms for optimal selection of wavelet basis is
heavily dependent on the properties of basic
wavelet used for transform. Obviously, the choice
of wavelet basis plays an important role in
achieving a large amount of data reduction and
compression. So-called adaptive wavelet analysis
deals with an algorithm for designing new wavelet
functions and focuses on choosing an optimal set
of wavelet coefficients. Given a signal of finite
length(e.g. yarn density profiles) and an analysis
objective(e.g. data reduction and compression), we
proceed by determining the quantities to measure
in order to achieve the objective.
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Recently, it was reported that optimal filter
coefficients could be made by optimizing over the
parameters which produce the filter coefficient
matrix”. The new scheme makes the optimization
routine simpler and computationally more efficient.

In this paper, we construct a library of waveforms
whose members have desirable properties well
matched to a specific signal (process) based on the
algorithm. We call it "a process dependent basis"
because it is constructed in a way of being opti-
mized for a yarn made by a specific process. As
a result of the optimization, more energy will be
concentrated on fewer coefficients, which means
more compact representation and thus data reduction.

Based on the optimization procedure, a specific
wavelet basis will be constructed for different
textile processes such as ring-spun, open-end and
high-draft yarn manufacturing processes.

2.1. Design of Wavelet Matrices

In this section, general procedure for parti-
tioning of the wavelet matrices is based on the
literature’. For the general m-band discrete wavelet
transform, a wavelet filter consists of one low pass
filter, and m-1 high pass filters. Ordinary wavelet
transform is a specific case of the m-band trans-
form when m is set to 2. Considering 3-band
discrete wavelet transform with one low pass filter
(h) and 2 high pass filters (g), each containing six
coefficients (n=6), such that h = (hy),...,hs), and

gV = (g, ..o, and g = ({?,...,g{)). The

transformation from an original signal xg (the
highest scale) to next scale xq is calculated by

P(O) W(O

cr

:U(l) - W(O)xo

(aloanamdm d(l)d(l)d(2) (2) (2))

Where/ a’]+1k th ]mk+z7 ]+1k Egz ]mk+1/

b=1,...m—1.

There are certain restrictions which must be
imposed upon the filter coefficients so that a
MRA and wavelet basis exist. These conditions
are summarized as follows[8]: 1) orthogonality
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DA AL | =641, Where &, is kronecker delta, I
is the identity matrix, 2) the regularity condition
Y h, = /3, and 3) Lawton Matrix M, = Y by,
k k

which must have an eigenvalue equal to one.

2.2. Process Dependent Basis

In this section, we develop an adaptive wavelet
well-fitted to specific yarn density profile.

Specifically, we are interested in optimizing
coefficients of wavelet filters for maximizing the
compression performance. We consider the factorized
form of a wavelet matrix instead of optimizing
over each element in A in order to reduce the
parameters to be optimized.

Given integers m = 2 and k= 1, any m x mk
matrix A satisfying the orthogonality condition can
be written in the factorized form’:.
A=(A¢A,..Ay_\)=H - Fy... » F, Q)

where, symbol o represents the "polynomial
product” which is defined by

(ByC-C, 1) » (CyCrnCoy)) = (DyDy-Dyy—y)

D;= 2By Gy, (3)

The factors F;=(P, I—P,),
symmetric projector P;=pP"=P?, and H=ZA;s
an orthogonal matrix (HH' ='1). For a simple
2-band transform with a filter length of 4, if the
orthogonality condition is satisfied, then”

where P is a

A=Ho F,=Ho (RJ-R)HI-R)|=[4,4,] (4

Next step is to find H and projection matrix R;
(for =1, ‘-, k) by factorization of matrix A. The
regularity condition leads us to set the first row of
Hto 1/vm 1, where 1 denotes a vector of ones.

The remaining m-1 rows of matrix Hare calcu-
lated by maintaining the orthogonality of matrix H.

A symmetric projection matrices of rank can be
written R=VV', where V.

maxT

is a matrix with
orthonormal columns. It has been well known
from a literature that for wavelet matrix to be
non-redundant, the ranks of the projection
matrices have to form a monotonically increasing
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sequence. That is where the rank(R,) < ... < rank(R,).
Sorre restriction(i.e. rank is one) is usually placed on
the projection matrices, and so we have also
followed it

_ r
Ri = UV,

where, 'u,-T v, =1

Finally, we obtain both an orthogonal matrix H
and projection matrices which are needed for
constructing the wavelet matrix. The wavelet
matrix can be constructed by normalized vectors
v, -; w and u which are generated randomly
from the uniform distribution.

For 2 band wavelet transform with 12 filter
length to be employed in the paper, the algorithm
is as follows:

Let
Qi = (I-R), Pi=(Ri-2R1R:*R;) and Py=(Rs-2ReR5+Rs),

where 1 is an (2x2) identity matrix.

A=Ho F o Fyo Fy o Fy o F,
=H- (R I-R)° (R I-R)) (R
]_Ra) ° (R4 [_R4) ° (Rs [—Rs) ©6)
=[H* A, HXx Ay H* Ay Hx Ay H* A;4
Hx Ag,

where A= RiR;R3R4Rs,
Ar=RiRo(RsPs+Q3R4Rs)+P1R3R4Rs,
A3=RiRy(R3Q4Q5+Q300)+P1(RsPi+QsReRs)
+Q1QoR3R4Rs,
AERIRQ3Q40Q5+P1(R3QuQs5+Q3Py)+Q1
RsP+Q3R4Rs),
As=P1Q5QuQ5+Q01Qo(RsQeQ5+QsPy) and
As=QnQ2Q25Q4Qs.

Since matrix H is fixed as
1 1 1 1

_\/?_ ? Ti 715_ for 2 band
V2 V2 V2 V2

wavelet transform, matrix A can be easily

or
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constructed by taking the different combinations
of the five R vectors. The unit vector R; can be
generated from any vector [a b]" which satisfies
a%b™=1. As an example, the vectors are [1 0]" and
[0.6 08]". By updating the five unit vectors R;
optimal filter coefficients are constructed which
satisfy a certain optimization criteria.

As a numerical example for constructing wavelet
matrix A, a detail procedure is shown as follow:

1. Generate five uniform random numbers 2,=0.9501,
a,=0.2311, a3=0.6068, a4=0.4860 and as=0.8913.
2. Construct five matrices b12 =1- a12, bzz =1- azz,
bi=1-a°bi=1-a’and b5’ =1 - a

3. vi=[0.9501 0.3119]", v»=[0.2311 0.9729]",
vs=[0.6068 0.7948]", v,=[0.4860 0.8740]" and
v5=[0.8913 0.4534]T, where v; =[a; bi].

4. Qi=(I-Ry); Q=(I-Ro);
Q5=(I-Rs);Qs=(I-Rq);Q5=(I-Rs);P1=(R1-2R; R2+R2);P
4=(R4-2R4R5+Rs);

5. A1=RiRoR3R4Rs
A=RIRy(RsPstQsRaRs) +P1R3R4Rs
As=RiRo(RaQuQs+QsP ) +P1 (RsPs+QsR4Rs)

+HHQRsR4Rs
A=RiRoQ5QuQ5+P1 (ResQusQs+QsPa) +HQi Qo(RaPut+
QsR4Rs);
As=P1QQuQsH U Q(ReQuQ5+QPs);
A= Q1QQBQQs

1 1
V2 V2

7. As[HA: HA; HA; HA; HAs HAG);

8. A=[ 0312 0.159 0.427 0.482 -0.323 0.205 0.290
0.126 0.081-0422 -0.080 0.158 0.158 0.080 -0.422
-0.081 0.126 -0.290 0.205 0.323 0.482 -0.427 0.159
-0.312].

The low-pass and high-pass filters are at the
first and second rows of matrix A, respectively.
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3. Experiment

As shown in Tables 1, three different type yarns
(ringspun, open-end, and high-draft) are employed
for this research. Ten replications of three kinds of
yarns were prepared for this study. The samples
with count of 6/1 - 28/1 and CV% of 15-20 are
mechanically conditioned at the room temperature
for a month. The yarn samples were conditioned
under standard atmosphere for a weak prior to
testing. From each package, a total of 1000 m was
measured continuously at a constant speed of 200
m/min and saved into data files after converting
them to digital signals. The sampling rate of the
data acquisition system was 833 KHz corresponding
to measurement of the diameter at every 2mm
segment of yarns. The density profiles of yarns
used have been shown in Figure 1.

Table 1. Test materials

Sample Type Count Test Machine
ringspun Cotton/ringspun 17/1 Zweigle
openend Cotton/openend 28/1 Zweigle

high-draft Cotton/high-draft 20/1 Zweigle

4. Results and Discussions

In this section, the filter coefficients were gene-
rated in order to satisfy a specific criterion,
adaptable to various spinning conditions. Based on
the algorithm developed in Section 2, a set of
optimal filter coefficients were generated for both
ringspun and openend yarns. The coefficients
minimizing the sum of squared errors between
original and reconstructed signals at a given
compression ratio have been chosen as a set of
optimal filter coefficients. For obtaining the optimal
filter coefficients, an optimization method based
on a quasi-Newton method was employed. The
method incorporates a mixed quadratic and cubic
line search algorithms”. Some empirical and heuristic
rules were also combined for determining the
values m, k and j (See Section 2).

While the values m and k have been arbitrarily
chosen by considering the processing time and
compression performance, the value j has been
fixed at 10. Any value of j greater than 10 was
considered unnecessary as the magnitudes as well
as the number of the wavelet coefficients become
small at the lower frequency scale windows.

Following these guidelines, a set of optimal
wavelet filters were produced for ringspun and

1200

Fig. 1. Density profiles of tested yarns.
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openend yarns. For the ringspun yarn samples,
the filter length n and the number of band m were
12 and 2, respectively. The following is a set of
filter coefficients for the ringspun yarn sample.
The coefficients, round off to one thousandth
decimal point, are as follows:

g : {0.016, -0.041, -0.067, 0.386, 0.813, 0417,

-0.076, -0.059, 0.023, 0.006, -0.002, -0.001}
h : { -0.001, 0.002, 0.006, -0.023, -0.059, 0.076,
0.417, -0.813, 0.386, 0.067, -0.041, -0.016}

Using the process dependent basis constructed,
compression experiments have been performed on
the yarn density signals during monitoring. The
main procedure is as follows:

1. Construct a process dependent basis.

2. Perform a wavelet packet transform.

3. Apply the "best basis" selection algorithm
based on entropy criteria.

4. Reconstruct a signal from the reduced wavelet
coefficients.

Finally, original and reconstructed signals have
been compared for displaying the compression
errors in Figure 2. As shown in the figure, two signals
are very similar to each other in appearance.

Figure 3 compares the performance of two bases
when applied to a ringspun yarn density.

Compared to a Daubechies-5 wavelet, the process
dependent basis shows a considerable reduction in
the sum of the squared reconstruction error.

Yarn Diameter

0 i,

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Yarn Position (time)

Fig. 2. Comparison of the original (a) and the 95% (b)
compressed signals and the differences((c) = (a) — ().
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Fig. 3. Comparison of the compression performances

of two bases(- — a Daubechies—5 and ——a process
dependent basis).

5. Conclusions

A data reduction algorithm was developed in
order to store a large amount of yarn diameter
signals by a newly developed wavelet compression
method. The process dependent basis(wavelet)
developed outperformed the conventional wavelets
by being optimized to a specific signal. Compared
to the conventional wavelets, the process depen-
dent basis could achieve a relatively higher level
of compression. It was shown that the yarn signals
could be compressed by over 95% without a
significant loss of information.
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