• Title/Summary/Keyword: sprout growth

Search Result 247, Processing Time 0.027 seconds

Growth and Textural Properties of the Sprouts of Soybean Groups with Different Seed Size (종자 크기가 다른 콩 종류의 콩나물 생장과 물성)

  • Hwang, Seung-Pil;Park, Euiho
    • Korean Journal of Breeding Science
    • /
    • v.43 no.4
    • /
    • pp.311-317
    • /
    • 2011
  • This experiment was conducted to give basic information to sprout-soybean breeding and automated sprout production by investigating the effect of seed size on the sprout growth and texture. Twenty cultivars and lines including large and medium soybean, small interspecific cultivars and extra-small wild soybean lines were used. Seeds were cultured for 4 days using small sprout-culturing kits. Hypocotyl length of large Hwanggeumkong, small Pungsannamulkong and Soyoung were longer and wild soybean lines were shorter than other cultivars. Fresh sprout weight and growth rate per unit dry seed weight of wild soybean lines ware increased dramatically and more than other cultivars between 48 to 72 hours after culture. Not only the increasing rate but sprout yield ratio to used dry seed weight showed the negative relationship pattern with seed size. The hardness of hypocotyl in Jangyeubkong, mastication in Taekwang, and cutting force in Eunhakong were the highest as 3,505 g, 1,650 g, and 133 g respectively, and texture values of these traits in wild soybean YWS516 were the lowest. Cutting force of soybean hypocotyl showed the positive relationship pattern with seed size. Breaking force of hypocotyl in large Jangyeobkong was the highest as 83.5g and wild soybean lines were the lowest showing the same pattern as other textural characters.

Growth and Bioactive Compound Contents of Various Sprouts Cultivated under Dark and Light Conditions (광 유무에 따른 다양한 새싹 채소의 생육 및 생리활성 화합물의 함량)

  • Lee, Jin-Hui;Oh, Myung-Min
    • Journal of Bio-Environment Control
    • /
    • v.30 no.3
    • /
    • pp.218-229
    • /
    • 2021
  • Recently, as consumers' interest and importance in health care have significantly increased, they prefer natural and organic foods that do not use chemical pesticides. Since sprout vegetables effectively promote health and prevent diseases such as cancer and cardiovascular disease, the consumption of sprout vegetables, a highly functional and safe food, has been increased significantly. This study aimed to investigate the effect of light on the growth and bioactive compounds of seven different sprout vegetables. After sowing the seeds of various sprout vegetables (kale, Chinese kale, broccoli, red cabbage, alfalfa, red radish, and radish), the sprouts were cultivated under light conditions (20℃, RGB 6:1:3, 130 μmol·m-2·s-1, 12 hours photoperiod) and dark condition for 7 days. Sprouts samples were taken at 1-day intervals from 4 to 7 days after treatment. The fresh weight, dry weight, plant height, total phenol content, and antioxidant capacity were measured. Brassica species (kale, Chinese kale, broccoli, red cabbage) and Medicago species (alfalfa) had significantly higher fresh weight values under dark conditions, while the content of bioactive compounds was increased considerably under light conditions. In contrast, the fresh weight of Raphanus genus (red radish, radish) significantly increased under the light condition, but the antioxidant phenolic compounds were significantly higher under the dark state. A negative correlation was observed between the growth and secondary metabolites in various sprout vegetables. This study confirmed the effect of light and dark conditions on different sprout vegetables' growth and nutritional value and emphasizes the importance of harvest time in producing high-quality sprout vegetables.

Changes in Growth and Morphological Characteristics of Soybean Sprouts in Response to Agitation of Culture Box (재배통의 흔들음 정도에 따른 콩나물의 생장과 형태 변화)

  • Hong Dong-Oh;Lee Chang-Woo;Kim Hong-Young;Kim Hee-Kyu;Kang Jin-Ho
    • Korean Journal of Plant Resources
    • /
    • v.19 no.2
    • /
    • pp.199-203
    • /
    • 2006
  • The marketability of soybean sprout mainly depends on shape such as hypocotyl thickness and presence of lateral root formation, etc. To clarify the effects of agitating culture box on growth and shape of soybean sprouts, different agitation frequency (0, 3, 5 times day-1) and duration (0, 1, 2, 3 days) were applied during sprout cultivation. More frequent and longer agitation resulted in less lateral root formation and shorter hypocotyl length, while total lengths were not affected by agitation due to agitation-induced root length increment. Agitation also increased the diameter of hypocotyl's hook pin, but not the middle part. Unlike morphological characteristics, the growth of sprouts as measured by fresh and dry weight of cotyledon, hypocotyl, root were not affected by agitation. In conclusion, it is very likely that agitating culture box during sprout cultivation may alter the shape of soybean sprouts without affecting growth of sprouts.

Effect of Charcoal on Germination and Early Growth of Barley Sprouts

  • Salitxay, Timnoy;Kim, Yeon Bok;Chang, Kwang Jin;Kalam, Azad Obyedul;Cho, Dong Ha;Park, Cheol Ho
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.133-133
    • /
    • 2018
  • The aim of this study was to evaluate the effect of charcoal on germination and early growth of barley sprouts. Five treatments were employed based on different amount and treatment method along with control. Barley seeds were soaked in water for 8 hours. Two types of topping treatment were applied such as, charcoal: 100 g (designated as T1) and charcoal: 200 g (T2). Three kinds of mixing treatment were as follows: barley seeds were mixed with 100g of charcoal (designated as M1), with 200g of charcoal (M2), and with 300g of charcoal(M3). The control did not have any charcoal. In our finding, germination rates were observed 53.3% (control), 26.3%(T1), 36.3%(T2), 67.3%(M1), 81.7%(M2), and 79.7%(M3) at three days after inoculation (DAI). Length of radicle was found at 0.90 cm (control), 0.88 cm (T1), 0.99 cm (T2), 1.03cm (M1), 1.66 cm (M2), and 0.70 cm (M3) in 3 DAI. In addition, sprout length was found 4.5 cm (control), 10.4 cm (T1), 11.9 cm (T2), 5.7 cm (M1), 6.3 cm (M2), and 2.1 cm (M3) in 14 DAI. Fresh weight of sprouts were 0.78g (control), 1.03g (T1), 1.07g (T2), 0.96g (M1), 1.07g (M2), and 0.95g (M3). Among the treatment, topping of seeds on 200g of charcoal (T2) showed longest sprout length and fresh weight. Mixing treatments showed higher germination rates and sprout fresh weight. The results may be attributed to difference in micro-climate conditions (mostly temperature and humidity) in the growth boxes in different treatments.

  • PDF

Efficacy of Aqueous Chlorine Dioxide and Citric Acid in Reducing Escherichia coli on the Radish Seeds Used for Sprout Production

  • Lim, Jeong-Ho;Jeong, Jin-Woong;Kim, Jee-Hye;Park, Kee-Jai
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.878-882
    • /
    • 2008
  • The efficacy of citric acid-aqueous chlorine dioxide ($ClO_2$) treatment of radish seeds artificially contaminated with Escherichia coli was studied. Radish seeds were inoculated with E. coli. Following inoculation, samples were stored at $4^{\circ}C$ and soaked in citric acid or aqueous $ClO_2$ for 10 min. The treatment of radish seeds using 200 ppm aqueous $ClO_2$ solution caused a 1.5 log CFU/g reduction in the population of E. coli. Compared to the aqueous $ClO_2$ treatment, soaking radish seeds in 2.0% citric acid solution for 10 min was more effective in reducing E. coli populations on radish seeds. The efficacy of spray application of chlorine (100 ppm) or 0.5% citric acid to eliminate E. coli during the germination and growth of radish was investigated. Radish seed inoculated with E. coli was treated for the duration of the growth period. Although it resulted in a decrease in the E. coli population, the spray application of 100 ppm chlorine during the growth period was not significantly effective. In contrast, the combined treatment of seeds using 200 ppm aqueous $ClO_2$ and treatment of sprouts with 0.5% citric acid solution during sprout growth was hardly effective in eliminating E. coli.

Effective Heat Treatment Techniques for Control of Mung Bean Sprout Rot, Incorporable into Commercial Mass Production

  • Lee, Jung-Han;Han, Ki-Soo;Kim, Tae-Hyoung;Bae, Dong-Won;Kim, Dong-Kil;Kang, Jin-Ho;Kim, Hee-Kyu
    • The Plant Pathology Journal
    • /
    • v.23 no.3
    • /
    • pp.174-179
    • /
    • 2007
  • Seedlot disinfection techniques to control mung bean sprout rot caused by Colletoricum acutatum and C. gloeosporioides were evaluated for commercial production scheme. Soaking seedlots in propolis (100 X) and ethanol (20% for 30 min) appeared promising with control values of 85.5 and 80.8 respectively, but still resulted in up to 20% rot incidence. None of the C. acutatum conidia survived through hot water immersion treatment (HWT) for 10 min at temperatures of 55, 60 and $65^{\circ}C$, whereas the effective range of the dry heat treatment (DHT) was $60-65^{\circ}C$. Tolerance of mung bean seedlot, as estimated by hypocotyl elongation and root growth, was lower for HWT than for DHT. Germination and growth of sprouts were excellent over the range of $55-65^{\circ}C\;at\;5^{\circ}C$ intervals, except for HWT at $65^{\circ}C$ for 5 min. At this marginal condition, heat damage appeared so that approximately 2% of seeds failed to sprout to normal germling and retarded sprouts were less than 5% with coarse wrinkled hypocotyls. These results suggested that DHT would be more feasible to disinfect mung bean seedlots for commercial sprout production. Heat treatment at above ranges was highly effective in eliminating the epiphytic bacterial strains associated with marketed sprout rot samples. HWT of seedlot at 55 and $60^{\circ}C$ for 5 min resulted in successful control of mung bean sprout rot incidence with marketable sprout quality. DHT at 60 and $65^{\circ}C$ for 30 min also gave good results through the small-scale sprouting system. Therefore, we optimized DHT scheme at 60 and $65^{\circ}C$ for 30 min, considering the practical value of seedlot disinfection with high precision and accuracy. This was further proved to be a feasible and reliable method against anthracnose incidence and those bacterial strains associated with marketed sprout rot samples as well, through factory scale mung bean sprout production system.

Effect of Electrolyzed Acidic Water on the Growth of Soybean Sprout. (산성 전해수가 콩나물의 생육에 미치는 영향)

  • 윤동준;이정동;강동진;박순기;황영현
    • Journal of Life Science
    • /
    • v.14 no.5
    • /
    • pp.809-814
    • /
    • 2004
  • To investigate the effect of the electrolyzed acidic water for soybean sprouts growth, the responses of characteristics of soybean sprouts were evaluated. Soybean sprouts grown by the electrolyzed acidic water showed shorter length in total body, root, and hypocotyl, etc. but they were evaluated to be increased in hypocotyl diameter and weight per sprout. Total length of soybean sprouts grown for 5 days by electrolyzed acidic water were much shorter than those by tap water. Soybean sprouts grown by tap water showed rapid growth in length even after 5 days but no more growth in length for those grown by electrolyzed acidic water. The growth of hypocotyl showed the same tendency as total length. No difference in root length among the soybean sprouts grown for 4 ~ 11 days by electrolyzed acidic water while those grown by tap water showed continuous rapid growth in length. The diameter of hypocotyl was thicker in those grown by electrolyzed acidic water than those grown by tap water and increased up 5 days. The weight of cotyledon grown by electrolyzed acidic water showed the proportional increase to the growing days but those grown by tap water showed no increase in hypocotyl weight up to 7 days, but a little bit increase after 11 days with the growth of new buds. The fresh weight per sprout was higher in those grown by electrolyzed acidic water until 7 days than tap water but it was the same weight in 11 days cultivation. The electrolyzed acidic water effected on shortening of hypocotyl and root length, thickening of hypocotyl diameter, and enlarging of cotyledon during soybean sprout cultivation.

Effect of Chlorella sp. on Improving Antioxidant Activities and Growth Promotion in Organic Soybean Sprout Cultivation (클로렐라 처리에 의한 유기농 콩나물 생육촉진 및 항산화 능력 증진효과)

  • Kim, Min-Jeong;Shim, Chang-Ki;Kim, Yong-Ki;Hong, Sung-Jun;Park, Jong-Ho;Han, Eun-Jung;Jee, Hyeong-Jin;Lee, Sung-Buk;Kim, Seok-Cheol
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.4
    • /
    • pp.939-950
    • /
    • 2015
  • The purpose of this study was to estimate the growth promoting effects and improvement of antioxidant activity of the soybean sprouts treated with Chlorella sp. culture solution. The soybean sprout treated with 0.1% and 0.2% Chlorella sp. culture solution was significantly increased the length (more than 43.0%), the thickness (more than 0.5~0.7 mm), fresh weight (more than 2.9~3.7 g) compared to non-treated control in vitro. In organic soybean sprouts farm, the 0.2% chlorella culture solution applied to mass culture of soybean sprout and the fresh weight of soybean sprouts increased by more than 25% and the yield was very high as 598.33% compared to untreated control. In addition of sensory test, there is no fishy odor and better crunchy texture and nutty flavor for the treatment soybean sprouts compared to untreated soybean sprouts. Particularly, free-radical scavenging activity (DPPH) and superoxide dismutase activity (SOD) of the soybean sprouts were significantly increased more than 26.1% and 40.4%, respectively by treated with 0.1% and 0.2% Chlorella culture solution. Consequently, the treatment of chlorella culture solution to grow soybean sprouts is also promoting quality and antioxidant activity as well as promoting the growth of sprouts. Therefore, chlorella is considered to be worth as functional materials for high-quality sprouts grown.

Development of Optimal Cultivation Conditions and Analysis of Antioxidant Activities of Arctium lappa Sprout Vegetables (우엉 새싹채소의 재배환경 구축 및 항산화 활성 탐색)

  • Lee, Moo-Yeul;Shin, So-Lim;Park, Seon-Hee;Kim, Na-Rae;Chang, Young-Deug;Lee, Cheol-Hee
    • Korean Journal of Plant Resources
    • /
    • v.22 no.4
    • /
    • pp.304-311
    • /
    • 2009
  • This study was conducted to develop functional sprout vegetables with antioxidant effects using seeds of Arctium lappa. The seeds germinated vigorously under light at $25^{\circ}C$, reaching germination rate of 82% within 4 days. Germinated seeds were placed under darkness at various temperatures to force growth in length, and it was demonatrated that $20^{\circ}C$ was optimum temperature. Greening treatment reduced growth in length, but promoted growth of cotyledons. Harvested A. lappa sprout vegetables maintained freshness longer at $10^{\circ}C$, rather than $4^{\circ}C$. Ventilation holes in storage containers had no effects on storage periods. Antioxidant activity of vegetable that received greening treatment for 1-3 days was investigated, and it was shown that free radical scavenging effects and ferrous ion chelating effects was higher than those of commercially available brocoli, cauliflower, pea and bean sprout. Contents of total polyphenol and flavonoid were also higher, especially by 3 day greening. The longer the treatment, the more the inhibition on peroxidation of linoleic acid. Sprout vegetable of A. lappa had higher antioxidant activity compared with adult plant. In conclusion, sprout vegetable of A. lappa has great potentiality for use as one of sprout vegetables.

The Effect of Ginseng on Gluconeogenesis at the Early Phase of Germination Soy-bean Sprout (인삼 사포닌 분획이 콩 발아시의 당 신생반응에 미치는 영향)

  • Park, Hye-Su;Gwak, Han-Sik;Ju, Chung-No
    • Journal of Ginseng Research
    • /
    • v.9 no.2
    • /
    • pp.221-231
    • /
    • 1985
  • The effect of ginseng saponin on the activities of isocitrate lyase, palate synthase, succinate dehydrogenase, malate dehydrogenase and lipase have been investigated at the early phase of germinating soy-bean sprout and found that all the above enzymes were stimulated when the bean was rinsed for 24 hours with 10-4% saponin solution. The length of the saponin treated group was not longer than that of control group but the weight of the former was heavier (15%) than the latter. Total sugar content of test group was always much higher than that of control. From the above results, it was concluded that ginseng saponin might stimulate several enzymes of Soybean sprout during germination resulting in rapid growth of the Soybean sprout.

  • PDF