• Title/Summary/Keyword: spring-mass systems

Search Result 142, Processing Time 0.026 seconds

Dynamic Modeling of Bolt Joints Using Lumped Mass-Spring Model (집중 질량-스프링 모델을 이용한 볼트 결합부 모델링)

  • Go, Gang-Ho;Lee, Jang-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.495-501
    • /
    • 2001
  • In this paper, a new technique which models the joints characteristics through reduction of DOFs of structures with joints using component mode synthesis (CMS) method is proposed. Bolt joints are modeled by mass-spring systems. Also generalized mass and stiffness matrices for this models are introduced. Because bolt joints have influence on eigenvalues of structures, exact eigenvalues from modal test are used. The results show that the behaviors of structures with bolt joints depend to a large extent on the translational DOFs and not on rotational DOFs of mass and stiffness matrices of bolts. Furthermore it is confirmed that lumped mass-spring systems as models of bolt joints are effective models considering the facts that joint characteristics converged to constant values in some iterations and eignevalues from proposed method are in good agreement with ones from modal test.

On mode localization of a weakly coupled beam system with spring-mass attachments

  • Huang, M.;Liu, J.K.;Lu, Z.R.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.1
    • /
    • pp.13-24
    • /
    • 2012
  • There are a large number of papers in the literature dealing with the free vibration analysis of single/multi-span uniform beam with multiple spring-mass systems, but that of coupled multi-span beams carrying spring-mass attachments is rare. In this note, free vibration analysis of a weakly coupled beam system with spring-mass attachments is conducted. The mode localization and frequency loci veering phenomena of the coupled beam system are investigated. Studies show that for weakly coupled beam system with spring-mass attachments, the mode localization and frequency loci veering will occur once there is a disorder in the system.

Floated Wafer Motion Modeling of Clean Tube system

  • Shin, Dong-Hun;Yun, Chung-Yong;Jeong, Kyoo-Sik;Choi, Chul-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1264-1268
    • /
    • 2004
  • This paper presents a wafer motion modeling of the transfer unit and the control unit in the clean tube system, which was developed as a means for transferring the air-floated wafers inside the closed tube filled with the super clean airs. The motion in the transfer unit is modeled as a mass-spring-damper system where the recovering force by air jets issued from the perforated plate is modeled as a linear spring. The motion in the control unit is also modeled as another mass-spring-damper system, but in two dimensional systems. Experiments with a clean tube system built for 12-inch wafers show the validity of the presented force and motion models.

  • PDF

Comparison of semi-active and passive tuned mass damper systems for vibration control of a wind turbine

  • Lalonde, Eric R.;Dai, Kaoshan;Bitsuamlak, Girma;Lu, Wensheng;Zhao, Zhi
    • Wind and Structures
    • /
    • v.30 no.6
    • /
    • pp.663-678
    • /
    • 2020
  • Robust semi-active vibration control of wind turbines using tuned mass dampers (TMDs) is a promising technique. This study investigates a 1.5 megawatt wind turbine controlled by eight different types of tuned mass damper systems of equal mass: a passive TMD, a semi-active varying-spring TMD, a semi-active varying-damper TMD, a semi-active varying-damper-and-spring TMD, as well as these four damper systems paired with an additional smaller passive TMD near the mid-point of the tower. The mechanism and controllers for each of these TMD systems are explained, such as employing magnetorheological dampers for the varying-damper TMD cases. The turbine is modelled as a lumped-mass 3D finite element model. The uncontrolled and controlled turbines are subjected to loading and operational cases including service wind loads on operational turbines, seismic loading with service wind on operational turbines, and high-intensity storm wind loads on parked turbines. The displacement and acceleration responses of the tower at the first and second mode shape maxima were used as the performance indicators. Ultimately, it was found that while all the semi-active TMD systems outperformed the passive systems, it was the semi-active varying-damper-and-spring system that was found to be the most effective overall - capable of controlling vibrations about as effectively with only half the mass as a passive TMD. It was also shown that by reducing the mass of the TMD and adding a second smaller TMD below, the vibrations near the mid-point could be greatly reduced at the cost of slightly increased vibrations at the tower top.

Robust Control of Two Mass Spring System with Parameter Variations (매개변수 변동을 갖는 2관성 시스템의 강건제어)

  • 조도현;이종용;이상효
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.6
    • /
    • pp.729-737
    • /
    • 1998
  • In this paper, using $\mu$ synthesis algorithm with structured uncertainty, we design controller and apply it for the Two-Inertia resonance(TMS: Two Mass Spring) system. The TMS system is one of the simplest models which generate a torsional vibration. In this system, it is required to design a controller achieving the control performance while suppressing the torsional vibration. Furthermore, when vibration frequency for the system is varying by reason of parameter variations, we should consider parameter variations in controller design. Then, we design two other controller schemes of the PI controller and the standard $H_{\infty}$ controller and compare these controllers with the controller designed by the $\mu$ synthesis robust control method by using simulations and experiments.

  • PDF

Absolute Stability of the Simple Fuzzy Logic Controller

  • Park, Byung-jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.7
    • /
    • pp.574-578
    • /
    • 2001
  • The stability analysis for the fuzzy logic controller (FLC) has widely been reported. Furthermore many research in the FLC has been introduced to decrease the number of parameters representing the antecedent part of the fuzzy control rule. In this paper we briefly explain a single-input fuzzy logic controller (SFLC) or simple-structured FLC which uses only a single input variable. And then we analyze that it is absolutely stale based on the sector bounded condition. We also show the feasibility of the proposed stability analysis through a numerical example of a mass-damper-spring system.

  • PDF

An approximate formula to calculate the fundamental period of a fixed-free mass-spring system with varying mass and stiffness

  • Kim, Juwhan;CoIIins, Kevin R.;Lim, Yun Mook
    • Structural Engineering and Mechanics
    • /
    • v.25 no.6
    • /
    • pp.717-732
    • /
    • 2007
  • A formula to approximate the fundamental period of a fixed-free mass-spring system with varying mass and varying stiffness is formulated. The formula is derived mainly by taking the dominant parts from the general form of the characteristic polynomial, and adjusting the initial approximation by a coefficient derived from the exact solution of a uniform case. The formula is tested for a large number of randomly generated structures, and the results show that the approximated fundamental periods are within the error range of 4% with 90% of confidence. Also, the error is shown to be normally distributed with zero mean, and the width of the distribution (as measured by the standard deviation) tends to decrease as the total number of discretized elements in the system increases. Other possible extensions of the formula are discussed, including an extension to a continuous cantilever structure with distributed mass and stiffness. The suggested formula provides an efficient way to estimate the fundamental period of building structures and other systems that can be modeled as mass-spring systems.

Position Control of Chained Multiple Mass-Spring-Damper Systems - Adaptive Output Feedback Control Approaches

  • S. S. Ge;L. Huang;Lee, T. H.
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.2
    • /
    • pp.144-155
    • /
    • 2004
  • This paper addresses the issue of position control of a chain of multiple mass-spring-damper (CMMSD) units which can be found in many physical systems. The dynamic model of a CMMSD system with any degrees of freedom is expressed in a closed-form for the convenience of the controller design. Backstepping and model reference adaptive control (MRAC) approaches are then used to develop two adaptive output feedback controllers to control the position of a CMMSD system. The proposed controllers rely on the measurements of the input (force) and the output (position of the mass unit at the end of the chain) of the system without the knowledge of its parameters and internal states. Simulations are used to verify the effectiveness of the controllers

Vibration suppression of a double-beam system by a two-degree-of-freedom mass-spring system

  • Rezaiee-Pajand, Mohammad;Sani, Ahmad Aftabi;Hozhabrossadati, Seyed Mojtaba
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.349-358
    • /
    • 2018
  • This paper investigates the free vibration analysis of double-beam system coupled by a two-degree-of-freedom mass-spring system. In order to generalize the model, the main beams are assumed to be elastically restrained against translation and rotation at one end and free at the other. Furthermore, the mass-spring system is elastically connected to the beams at adjustable positions by means of four translational and rotational springs. The governing differential equations of the beams and the mass-spring system are derived and analytically solved by using the Fourier transform method. Moreover, as a second way, a finite element solution is derived. The frequency parameters and mode shapes of some diverse cases are obtained using both methods. Comparison of obtained results by two methods shows the accuracy of both solutions. The influence of system parameters on the free vibration response of the studied mechanical system is examined.

Estimation of viscous and Coulomb damping from free-vibration data by a least-squares curve-fitting analysis

  • Slemp, Wesley C.H.;Hallauer, William L. Jr.;Kapania, Rakesh K.
    • Smart Structures and Systems
    • /
    • v.4 no.3
    • /
    • pp.279-290
    • /
    • 2008
  • The modeling and parameter estimation of a damped one-degree-of-freedom mass-spring system is examined. This paper presents a method for estimating the system parameters (damping coefficients and natural frequency) from measured free-vibration motion of a system that is modeled to include both subcritical viscous damping and kinetic Coulomb friction. The method applies a commercially available least-squares curve-fitting software function to fit the known solution of the equations of motion to the measured response. The method was tested through numerical simulation, and it was applied to experimental data collected from a laboratory mass-spring apparatus. The mass of this apparatus translates on linear bearings, which are the primary source of light inherent damping. Results indicate that the curve-fitting method is effective and accurate for both perfect and noisy measurements from a lightly damped mass-spring system.