Browse > Article
http://dx.doi.org/10.12989/was.2020.30.6.663

Comparison of semi-active and passive tuned mass damper systems for vibration control of a wind turbine  

Lalonde, Eric R. (State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University)
Dai, Kaoshan (Department of Civil Engineering, Sichuan University)
Bitsuamlak, Girma (Department of Civil and Environmental Engineering, University of Western Ontario)
Lu, Wensheng (State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University)
Zhao, Zhi (State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University)
Publication Information
Wind and Structures / v.30, no.6, 2020 , pp. 663-678 More about this Journal
Abstract
Robust semi-active vibration control of wind turbines using tuned mass dampers (TMDs) is a promising technique. This study investigates a 1.5 megawatt wind turbine controlled by eight different types of tuned mass damper systems of equal mass: a passive TMD, a semi-active varying-spring TMD, a semi-active varying-damper TMD, a semi-active varying-damper-and-spring TMD, as well as these four damper systems paired with an additional smaller passive TMD near the mid-point of the tower. The mechanism and controllers for each of these TMD systems are explained, such as employing magnetorheological dampers for the varying-damper TMD cases. The turbine is modelled as a lumped-mass 3D finite element model. The uncontrolled and controlled turbines are subjected to loading and operational cases including service wind loads on operational turbines, seismic loading with service wind on operational turbines, and high-intensity storm wind loads on parked turbines. The displacement and acceleration responses of the tower at the first and second mode shape maxima were used as the performance indicators. Ultimately, it was found that while all the semi-active TMD systems outperformed the passive systems, it was the semi-active varying-damper-and-spring system that was found to be the most effective overall - capable of controlling vibrations about as effectively with only half the mass as a passive TMD. It was also shown that by reducing the mass of the TMD and adding a second smaller TMD below, the vibrations near the mid-point could be greatly reduced at the cost of slightly increased vibrations at the tower top.
Keywords
wind turbine; multiple tuned mass damper; semi-active control; seismic loading; wind loading; case study;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Aboshosha, H., Bitsuamlak, G. and El Damatty, A. (2015a), "Turbulence characterization of downburst using LES", J. Wind Eng. Ind. Aerod., 136, 44-61. https://doi.org/10.1016/j.jweia.2014.10.020.   DOI
2 Aboshosha, H., Elshaer, A., Bitsuamlak, G. and El Damatty, A. (2015b), "Consistent inflow turbulence generator for LES evaluation of wind-induced responses for tall buildings", J. Wind Eng. Ind. Aerod., 142, 198-216. https://doi.org/10.1016/j.jweia.2015.04.004.   DOI
3 Park, S., Lackner, M.A., Cross-Whiter, J., Tsouroukdissian, A.R. and La Cava, W. (2016), "An investigation of passive and semi-active tuned mass dampers for a tension leg platform floating offshore wind turbine in ULS conditions", OMAE 2016 Proceedings, Busan, Korea, June.
4 Park, S., Lackner, M.A., Pourazarm, P., Tsouroukdissian, A.R.n and Cross-Whiter, J. (2019), "An investigation on the impacts of passive and semiactive structural control on a fixed bottom and a floating offshore wind turbine", J. Wind Energy, 22, 1451-1471. https://doi.org/10.1002/we.2381.   DOI
5 Pinkaew, T. and Fujino, Y. (2001), "Effectiveness of semi-active tuned mass dampers under harmonic excitation", Eng. Struct., 23(7), 850-856. https://doi.org/10.1016/S0141-0296(00)00091-2.   DOI
6 Prowell, I., Veletzos, M., Elgamal, A. and Restrepo, J. (2009), "Experimental and numerical seismic response of a 65kW wind turbine", J. Earthq. Eng., 13(8), 1172-1190. https://doi.org/10.1080/13632460902898324.   DOI
7 Rahman, M., Ong, Z.C., Chong, W.T., Julai, S. and Khoo, S.Y. (2015), "Performance enhancement of wind turbine systems with vibration control: A review", J. Renew. Sustain. Energy Rev., 51, 43-54. https://doi.org/10.1016/j.rser.2015.05.078.   DOI
8 Reddy, J.N. (1993), "An introduction to the finite element method (2nd edition)", McGraw-Hill, Inc.
9 Ricciardelli, F., Occhiuzzi, A. and Clemente, P. (2000), "Semi-active tuned mass damper control strategy for wind excited structures", J. Wind Eng. Ind. Aerod., 88(1), 57-74. https://doi.org/10.1016/S0167-6105(00)00024-6.   DOI
10 Sadowski, A.J., Camara, A., Malaga-Chuquitaype, C. and Dai K. (2017), "Seismic analysis of a tall metal wind turbine support tower with realistic geometric imperfections", Wind Structures, 46(2), 201-219. https://doi.org/10.1002/eqe.2785.
11 Sun, C. and Jahangiri, V. (2018), "Bi-directional vibration control of offshore wind turbines using a 3D pendulum tuned mass damper", Mech. Syst. Signal. Proc., 105, 338-360. https://doi.org/10.1016/j.ymssp.2017.12.011.   DOI
12 Spencer, B., Finholt, T.A., Foster, I., Kesselman, C., Beldica, C., Futrelle, J., Gullapalli, S., Hubbard, P., Liming, L., Marcusiu, D., Pearlman, L., Severance, C. and Yang, G. (2004), "NEESgrid: A Distributed Collaborator for Advanced Earthquake Engineering Experiment and Simulation", The 13th World Conference on Earthquake Engineering, Vancouver, Canada, August.
13 Stewart, G.M. (2012), "Load reduction of floating wind turbines using tuned mass dampers", Master Dissertation, University of Massachusetts Amherst, Amherst, U.S.A.
14 Sun, C. (2017), "Mitigation of offshore wind turbine responses under wind and wave loading: Considering soil effects and damage", Struct. Control Health Monit., 25(3). https://doi.org/10.1002/stc.2117.
15 Sun, C. and Nagarajaiah, S. (2013), "Study on semi-active tuned mass damper with variable damping and stiffness under seismic excitations", J. Struct. Control Health Monit., 21(6), 890-906. https://doi.org/10.1002/stc.1620.
16 Glauert, H. (1935), "Airplane Propellers", In Aerodynamic theory Springer, Berlin.
17 Sun, C., Nagarajaiah, S. and Dick, A.J. (2014), "Experimental investigation of vibration attenuation using nonlinear tuned mass damper and pendulum tuned mass damper in parallel", J. Nonlinear Dyn., 78(4), 2699-2715. https://doi.org/10.1007/s11071-014-1619-3.   DOI
18 Talatahari, S., Kaveh, A. and Mohajer Rahbari, N. (2012), "Parameter identification of Bouc-Wen model for MR fluid dampers using adaptive charged system search optimization", J. Mech. Sci. Technol., 26(8), 2523-2534. https://doi.org/10.1007/s12206-012-0625-y.   DOI
19 Tsouroukdissian, A.R., Park, S., Pourazarm, P., La Cava, W., Lackner, M., Lee, S. and Cross-Whiter, J. (2016), "Smart novel semi-active tuned mass damper for fixed-bottom and floating offshore wind", Offshore Technology Conference, Houston, U.S.A.
20 Ancheta, T.D., Darragh, R.B., Stewart, J.P., Seyhan, E., Silva, W.J., Chiou, B.S.J., Wooddell, K.E., Graves, R.W., Kottke, A., Boore, D.M., Kishida, T. and Donahue, J. (2013), "PEER NGA-West2 Database", Pacific Earthquake Engineering Research Center, Berkeley, U.S.A.
21 Global Wind Energy Council (2017), "Global Wind Statistics 2017", Brussels, Belgium. http://gwec.net/wp-content/uploads/vip/GWEC_PRstats2017_EN-003_FINAL.pdf.
22 Hartog, J.P.D. (1956), "Mechanical vibrations", McGraw-Hill.
23 He, E., Hu, Y. and Zhang, Y. (2017), "Optimization design of tuned mass dampers for vibration suppression of a barge-type offshore floating wind turbine", J. Eng. Maritime Environ., 231(1), 302-315. https://doi.org/10.1177/1475090216642466.
24 Hemmati, A. and Oterkus, E. (2018), "Semi-active structural control of offshore wind turbines considering damage development", Journal of Marine Science and Engineering, 6(3), 102. https://doi.org/10.3390/jmse6030102.   DOI
25 Hrovat, D., Barak, P. and Rabins, M. (1983), "Semi-active versus passive or active tuned mass dampers for structural control", J. Eng. Mech., 109(3), 691-705. https://doi.org/10.1061/(ASCE)0733-9399(1983)109:3(691).   DOI
26 Huang, C., Arrigan, J., Nagarajaiah, S. and Basu, B. (2010), "Semi-active algorithm for edgewise vibration control in floating wind turbine blades", In Earth and Space 2010: Engineering, Science, Construction, and Operations in Challenging Environments.
27 Zhang, R., Zhao, Z. and Dai, K. (2019), "Seismic response mitigation of a wind turbine tower using a tuned parallel inerter mass system", Eng. Struct., 180, 29-39. https://doi.org/10.1016/j.engstruct.2018.11.020.   DOI
28 Veers, P.S. (1988), "Three-dimensional wind simulation", Sandia National Laboratories, Albuquerque, U.S.A.
29 Wang, Z., Zhao, Y., Li, F. and Jiang, J. (2013), "Extreme dynamic responses of MW-level wind turbine tower in the strong typhoon considering wind-rain loads", Math. Probl. Eng., 2013. https://doi.org/10.1155/2013/512530.
30 Yang, G., Spencer, B.F., Carlson, J.D. and Sain, M.K. (2002), "Large-scale MR fluid dampers: modeling and dynamic performance considerations", Eng. Struct., 24, 309-323. https://doi.org/10.1016/S0141-0296(01)00097-9.   DOI
31 Zhao, Z., Dai, K., Camara, A., Bitsuamlak, G. and Sheng, C. (2019a), "Wind turbine tower failure modes under seismic and wind loads", J. Perform. Construct. Facil., 33(2). https://doi.org/10.1061/(ASCE)CF.1943-5509.0001279.
32 Brodersen, M.L., Bjorke, A. and Hogsberg, J. (2017), "Active tuned mass damper for damping of offshore wind turbine vibrations", Wind Energy, 20(5), 783-796. https://doi.org/10.1002/we.2063.   DOI
33 Argyriadis, K. and Hille, N. (2004), "Determination of fatigue loading on a wind turbine with oil damping device", In the Proceedings of the 2004 European Wind Energy Conference & Exhibition, London.
34 Arrigan, J., Pakrashi, V., Basu, B. and Nagarajaiah, S. (2011), "Control of flapwise vibrations in wind turbine blades using semi-active tuned mass dampers", J. Struct. Control Heal. Monit., 18(8), 840-851. https://doi.org/10.1002/stc.404.   DOI
35 Asareh, M.A., Schonberg, W. and Volz, J. (2016), "Fragility analysis of a 5-MW NREL wind turbine considering aero-elastic and seismic interaction using finite element method", Finite Elemen. Analy. Des., 120(1), 57-67. https://doi.org/10.1016/j.finel.2016.06.006.   DOI
36 Brodersen, M.L., Ou, G., Hogsberg, J. and Dyke, S. (2016), "Analysis of hybrid viscous damper by real time hybrid simulations", Eng. Struct., 126, 675-688. https://doi.org/10.1016/j.engstruct.2016.08.020.   DOI
37 Caterino, N. (2014), "Semi-active control of a wind turbine via magnetorheological dampers", J. Sound Vib., 345, 1-17. https://doi.org/10.1016/j.jsv.2015.01.022.   DOI
38 Caterino, N., Georgakis, C.T., Spizzuoco, M. and Occhiuzzi, A. (2016), "Design and calibration of a semi-active control logic to mitigate structural vibrations in wind turbines", Smart Struct. Syst., 18(1), 75-92. https://doi.org/10.12989/sss.2016.18.1.075.   DOI
39 Hussan, M., Sharmin, F. and Kim, D. (2017), "Multiple tuned mass damper based vibration mitigation of offshore wind turbine considering soil-structure interaction", Mech. Syst. Sig. Proc., 105, 338-360. https://doi.org/10.1016/j.ymssp.2017.12.011.   DOI
40 Hussan, M., Rahman, M.S., Sharmin, F., Kim, D. and Do, J. (2018), "Multiple tuned mass damper for multi-mode vibration reduction of offshore wind turbine under seismic excitation", Ocean Eng., 160, 449-460. https://doi.org/10.1016/j.oceaneng.2018.04.041.   DOI
41 International Electrotechnical Commission (2005), "IEC 61400-1 International Standard: Wind turbines 3rd ed.", Geneva, Switzerland.
42 Valamanesh, V. and Myers, A.T. (2014), "Aerodynamic damping and seismic response of horizontal axis wind turbine towers", J. Struct. Eng., 140. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001018.
43 Zhao, Z., Dai, K., Lalonde, E.R., Meng, J., Li, B., Ding, Z. and Bitsuamlak, G. (2019b), "Studies on application of scissor-jack braced viscous damper system in wind turbines under seismic and wind loads", Eng. Struct., 196. https://doi.org/10.1016/j.engstruct.2019.109294.
44 Zuo, H., Bi, K. and Hao, H. (2017), "Using multiple tuned mass dampers to control offshore wind turbine vibrations under multiple hazards", Eng. Struct., 141(15), 303-315. https://doi.org/10.1016/j.engstruct.2017.03.006.   DOI
45 Rezaee, M. and Aly, A.M. (2016), "Vibration control in wind turbines for performance enhancement: A comparative study", Wind Struct., 22(1), 107-131. https://doi.org/10.12989/was.2016.22.1.107.   DOI
46 Kaveh, A., Pirgholizadeh, S. and Khademhosseini, O. (2015), "Semi-active tuned mass damper performance with optimized fuzzy controller using CSS algorithm", Asian J. Civil Eng., 16(5), 587-606.
47 Caterino, N., Georgakis, C.T., Trinchillo, F. and Occhiuzzi, A. (2014), "A semi-active control system for wind turbines", Wind Turbine Control Monit., 375-407. https://doi.org/10.1007/978-3-319-08413-8_13.
48 Jonkman, J. (2018), "FAST", National Renewable Energy Laboratory, Washington D.C. USA. https://nwtc.nrel.gov/FAST.
49 Jonkman, J., Butterfield, S., Musial, W. and Scott, G. (2009). "NREL/TP-500-38060: Definition of a 5-MW Reference Wind Turbine for Offshore System Development", Golden, U.S.A.
50 Katsanos, E., Thons, S. and Georgakis, C.T. (2016), "Wind turbines and seismic hazard: a state-of-the-art review", J. Wind Energy, 19(11), 2113-2133. https://doi.org/10.1002/we.1968.   DOI
51 Kelly, N. and Jonkman, B. (2012), "TurbSim", National Renewable Energy Laboratory, Washington D.C. U.S.A.
52 Lackner, M.A. and Rotea, M.A. (2010), "Passive structural control offshore wind turbines", J. Wind Energy, 14(3), 373-388. https://doi.org/10.1002/we.426.   DOI
53 Chen, C., Ricles, J.M., Marullo, T.M. and Mercan, O. (2009), "Real-time hybrid testing using the unconditionally stable explicit CR integration algorithm", Earthq. Eng, Struct. Dyn., 38(1), 23-44. https://doi.org/10.1002/eqe.838.   DOI
54 Caterino, N., Spizzuoco, M. and Occhiuzzi, A. (2011), "Understanding and modelling the physical behaviour of magnetorheological dampers for seismic structural control", Smart Mat. Struct., 20(6). https://doi.org/10.1088/0964-1726/20/6/065013.
55 Caterino, N., Spizzuoco, M., and Occhiuzzi, A. (2013), "Promptness and dissipative capacity of MR dampers: Experimental investigations", Structural Control and Health Monitoring, 20, 1424-1440. https://doi.org/10.1002/stc.1578.   DOI
56 Chae, Y., Ricles, J.M. and Sause, R. (2012), "Modeling of a large-scale magneto-rheological damper for seismic hazard mitigation. Part 1: Passive mode", Earthq. Eng. Struct. Dyn., 42(5). https://doi.org/10.1002/eqe.2237.
57 Chey, M., Chase, J.G., Mander, J.B. and Carr, A.J. (2009), "Semi-active tuned mass damper building systems: Design", Earthq. Eng. Struct. Dyn., 39(2), 119-139. https://doi.org/10.1002/eqe.934.   DOI
58 Chou, J.S. and Tu, W.T. (2011), "Failure analysis and risk management of a collapsed large wind turbine tower", Eng. Fail. Analy, 8(1), 295-313. https://doi.org/10.1016/j.engfailanal.2010.09.008.   DOI
59 Chung, L., Lai, Y., Yang, C.W., Lien, K. and Wu, L. (2013), "Semi-active tuned mass dampers with phase control", J. Sound Vib., 332(15), 3610-3625. https://doi.org/10.1016/j.jsv.2013.02.008.   DOI
60 Connor, J.J. (2002), "Introduction to Structural Motion Control", Pearson.
61 Martynowicz, P. (2015), "Vibration control of wind turbine tower-nacelle model with magnetorheological tuned vibration absorber", J. Vib. Control, 1-22. https://doi.org/10.1177/1077546315591445.
62 Lackner, M.A. and Rotea, M.A. (2011), "Structural control of floating wind turbines", J. Mechatronics, 21(4), 704-719. https://doi.org/10.1016/j.mechatronics.2010.11.007.   DOI
63 Li, X., Ozdagli, A.I., Dyke, S.J., Liu, X. and Christenson, R. (2017), "Development and verification of distributed real-time hybrid simulation methods", J. Comput. Civil Eng., 31(4). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000654.
64 Mardfekri, M. and Gardoni, P. (2015), "Multi-hazard reliability assessment of offshore wind turbines", Wind Energy, 18(8), 1433-1450. https://doi.org/10.1002/we.1768.   DOI
65 Dai, K., Sheng, C., Zhao, Z., Yi, Z., Camara, A. and Bitsuamlak, G. (2017b), "Nonlinear response history analysis and collapse mode study of a wind turbine tower subjected to tropical cyclonic winds", Wind Struct., 25(1), 79-100. https://doi.org/10.12989/was.2017.25.1.079.   DOI
66 Dagnew, A.K. and Bitsuamlak, G. (2013), "Computational evaluation of wind loads on buildings: a review", Wind Struct., 16(6), 629-660. https://doi.org/10.12989/was.2013.16.6.629.   DOI
67 Martynowicz, P. (2016), "Study of vibration control using laboratory test rig of wind turbine tower-nacelle system with MR damper based tuned vibration absorber", Bull. Polish Academy Sci., 64(2). https://doi.org/10.1515/bpasts-2016-0040.
68 Martynowicz, P. (2017), "Control of a magnetorheological tuned vibration absorber for wind turbine application using the refined force tracking algorithm", J. Low Freq. Noise, Vib. Active Control, 36(4), 339-353. https://doi.org/10.1177/1461348417744299.   DOI
69 Ministry of Housing and Urban-Rural Development of the People's Republic of China (2010), "Code for seismic design of buildings", Beijing, China.
70 Mo, R., Kang, H., Li, M. and Zhao, X. (2017), "Seismic fragility analysis of monopile offshore wind turbines under different operational conditions", Energies, 10. https://doi.org/10.3390/en10071037.
71 Dai, K., Wang, Y., Huang, Y., Zhu, W. and Xu, Y. (2017a), "Development of a modified stochastic subspace identification method for rapid structural assessment of in-service utility-scale wind turbine towers", Wind Energy, 20(10), 1687-1710. https://doi.org/10.1002/we.2117.   DOI
72 Dai, K., Yichao, H., Changqing, G., Zhenhua, H. and Xiaosong, R. (2015), "Rapid seismic analysis methodology for in-service wind turbine towers", Earthq. Eng. Eng. Vib., 14(3), 539-548. https://doi.org/10.1007/s11803-015-0043-0.   DOI
73 Diaz, O. and Suarez, L.E. (2014), "Seismic analysis of wind turbines", Earthq. Spectra, 30(2), 743-765. https://doi.org/10.1193/123011EQS316M.   DOI
74 Dinh, V., Basu, B. and Nagarajaiah, S. (2016), "Semi-active control of vibrations of spar type floating offshore wind turbines", Smart Struct., 18(4), 683-705. https://doi.org/10.12989/sss.2016.18.4.683.   DOI
75 Eason, R.P., Sun, C., Dick, A.J. and Nagarajaiah, S. (2013), "Attenuation of a linear oscillator using a nonlinear and a semi-active tuned mass damper in series", J. Sound Vib., 332(1), 154-166. https://doi.org/10.1016/j.jsv.2012.07.048.   DOI
76 Esteki, K., Bagchi, A. and Sedaghati, R. (2011), "Semi-active tuned mass damper for seismic applications", Smart Materials Structures & NDT in Aerospace Conference, Montreal, Canada, November.
77 Gairola, A. and Bitsuamlak, G. (2019), "Numerical tornado modeling for common interpretation of experimental simulators", J. Wind Eng. Ind. Aerod., 186, 32-48. https://doi.org/10.1016/j.jweia.2018.12.013.   DOI
78 Nagarajaiah, S. and Sonmez, E. (2007), "Structures with semiactive variable stiffness single/multiple tuned mass dampers", J. Struct. Eng., 133(1), 67-77. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:1(67).   DOI
79 Murtagh, P.J., Ghosh, A., Basu, B. and Broderick, B.M. (2008), "Passive control of wind turbine vibrations including blade/tower interaction and rotationally sampled turbulence", Wind Energy, 11(4), 305-317. https://doi.org/10.1002/we.249.   DOI
80 Nagarajaiah, S. (2009), "Adaptive passive, semiactive, smart tuned mass dampers: identification and control using empirical mode decomposition, Hilbert transform, and short-term fourier transform", J. Struct. Control Health Monit., 16(7), 800-841. https://doi.org/10.1002/stc.349.   DOI
81 Owji, H.R., Shirazi, A.H.N. and Sarvestani, H.H. (2011), "A comparison between a new semi-active tuned mass damper and an active tuned mass damper", Procedia Eng., 14, 2779-2787. https://doi.org/10.1016/j.proeng.2011.07.350.   DOI