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Abstract

The stability analysis for the fuzzy logic controller (FLC) has widely been reported. Furthermore many research in the
FLC has been introduced to decrease the number of parameters representing the antecedent part of the fuzzy control
rule., In this paper we briefly explain a single-input fuzzy logic controller (SFLC) or simple-structured FLC which
uses only a single input variable. And then we analyze that it is absolutely stable based on the sector bounded

condition. We also show the feasibility of the proposed stability analysis through a numerical

mass-damper-spring system.

example of a
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1. Introduction

According as the controlled plants become more
complex and large-scaled, the development of more
intelligent control schemes is required in the control field.
A fuzzy logic control is one of proper schemes for this
tendency.

Recently, fuzzy control has been applied successfully
to many industrial applications due to a number of
advantages. But it still has some disadvantages:
excessive number of tuning factors, difficulty to stability
analysis, and etc..

The conventional FLC has many tuning parameters:
membership functions, scaling factors, and so forth. In
order to improve this problem, most fuzzy logic controls
use the error and the change-of-error as fuzzy input
variables regardless of the complexity of controlled
plants. But these FLC’s are typically suitable for the
case of some simple lower order plants. In case of
general complex higher order plants, all process states
are commonly required as fuzzy input variables for a
desirable performance. Unfortunately, it needs a huge
number of control rules, membership functions, and
scaling factors. The single-input fuzzy logic control
which greatly simplifies the design process of the
conventional FLC was proposed in some papers{1-4]. It
used only a single input variable for the FLC of an
arbitrary controlled plant with the minimum phase
property. Then the control performance was quite a
good. Therefore the SFLC had many advantages besides
the simplification of the design procedure of the
conventional FLC.
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Many research has been proposed to develop the
stability analysis of the FLC. Kickert and Mamdani[5]
used describing function techniques to study the stability
analysis. Ray et al.[6] applied circle criteria scheme for
linear SISO and MIMO systems associated with FLC.
Tanaka and Sugenol7] studied the stability and design
technique for a new type of the FLC. Fuh and Tung(8]
analyzed the robust stability of a conventional FLC.

In this paper we analyze the absolute stability of the
SFLC and represent a numerical example. We first
expand a nonlinear controlled plant into a Taylor series
about a nominal operating point. And a fuzzy control
system is transformed into a Lure system with
nonlinearities. We also prove that the closed-loop system
with the SFLC satisfies the sector condition globally.

This paper is organized as follows. We simply
describe the SFLC in the following section. In Section 3,
we analyze the absolute stability of the SFLC. We
present a numerical example in order to show the
feasibility of the proposed stability analysis in Section 4.
We finally discuss a concluding remarks in Section 5.

2. Single-input Fuzzy Logic Control

The SFLC was designed for FLC's with skew-—

symmetric property in a fuzzy control rule table[1,2].

Let the controlled process be a system with n-th
order (linear or nonlinear) state equation:

x = Foow, M
with
x = [xq, x5, “.?xn]T ‘
_ [xf %, o, x0T 2)



F(x, w)
representing both

are partially known continuous
system dynamics and
unknown external disturbances, x(H e R* is the
process state vector, and «(H € R and () R are the
input and output of the system, respectively.

where
functions

The control problem is to force 3(#) to track a given

bounded reference input signal x,(#. Let e(H be the-

tracking error vector as follows
e(f) =

= [e(d), &), -, e" (D],

x(8 — x4
(3

The rule form for the conventional (PD-type) FLC
using two fuzzy input variables of the error and the
change-of-error is as follows:

Ye: If e is LE; and eis LDE,
then = is LUy ’

i=1,2, ...,M, j=1,2,

where LE, LDE, and LU are the linguistic values
taken by the process state variables e, e, and 1,
respectively. If the controlled plant has minimum phase
property, then the fuzzy control rule table is skew
symmetric. ‘That is, the absolute magnitude of the
control input, |«|, is approximately proportional to the
distance from a straight line called the switching line.
Then a signed distance d, is defined as follows:

. N,

>+ e

d, = L Ag
s sgn(s) T A @

_ _etde
1+ 4%
where

1 for ;>0

sgn(s) = . 5)
-1 for 5,¢<0

It is a distance between an operating point and the

switching line. Thus, we conclude that:
u x —d, . 6)

Then, a fuzzy rule table can be established on an
one-dimensional space of d, instead of a two-
dimensional space of the phase plane. That is, the
control action can be determined by d, only. So, we call
it SFLC. The rule form for the SFLC is given as
follows:

R

If d, is LDL, then u is LU, ,

where LDL, is the linguistic value of the signed

distance in the k-th rule. Then the rule table can be
established on an one-dimensional space like Table 1.

Table 1. Rule table for the SFLC.

d, | LDL_,| LDL_,| LDL,
u LUZ LU; LUB

LDL,
LU,

LDL,
LU,
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In Table 1, subscripts -2, -1, 0, 1, and 2 denote fuzzy
linguistic values of Negative Big (NB), Negative Small
(NS), ZeRo (ZR), Positive Small (PS), and Positive Big
(PB), respectively. Hence, the number of rules is greatly
reduced compared to the case of the conventional FL.C’s.
Also, we can easily add or modify rules for fine control.

The general n-input FLC has rules of the following
form:

ey is LEL -, and e,is LE}
then wis LU, ,

k= 1’2'...’m"’

R:, : If evis LE,

where m is the number of fuzzy sets for each fuzzy
input variable and LE% (i = 1,2, -, n) is the linguistic
value taken by the process state variable e; (= x“ 7V —

7YY in the k-th rule.

Similar to the 2-dimensional rule table for RY, , the
n-dimensional one for R%, also satisfies skew-symmetry
property and the absolute magnitude of the control input
is proportional to the distance from its main diagonal
hyperplane (instead of the diagonal line in the
two-dimensional table). Then d, of Eq. (4) is changed
to a general signed distance D, as follows:

e" U+ A, e P+ e+ e

D, = : 7
Vit 2, + 8+ 4 @

That is, D, represents the signed distance from the

operating point to the switching hyperplane. Then the
rule table 1s still equivalent to Table 1 except D,

instead of d,. From Eq. (7) we can see that the general
signed distance, D, contains knowledge of all process
states as well as the error and the change-of-error.

3. Absolute Stability of the SFLC

We analyze the stability in the case that the SFLC
operates as a nonlinear controller. That is, we assume
that the relationship between input and output of the
SFLC is nonlinear.

We first expand a nonlinear controlled plant (1) into a
Taylor series about (xg, uy):

x = Ayx + Bou + g(x,u),

o &
y = CJX,
where
Av=gr| (9
B = [0 &x)], (10)
and
cl = 1 0l (11
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Here g(x,u) includes modeling error, aging, uncertainties,
and disturbances. And x¢ and u; denote the nominal
operating point and the nominal input, respectively. Then
Eq. (8) is called by the perturbed Lure system.

We consider the SFLC. Similar to R%,.,, its generalized
rule form is as follows:

R, . I D, is LGDL"™ Then u is LU .

From Table 1, we can see that the output of the
SFLC is symmetric with respect to zero action and
bounded by a linear gain. That is, the control input u is
expressed as follows:

u= —¢(D,) (12)

That is, ¢( -) is a nonlinear function that belongs to

a sector (0, ], where r is a positive constant.

The block diagram of the closed-loop system with the
SFLC can be represented as Fig. 1.

Fig. 1. Block diagram of the closed-loop system with the
SFLC.

As x4 = 0, D, is expressed by the following equation.

e D 441" b+ et Age

D, = -
\ VIt G+ A+ A
— V_l_‘ (x(n""l) + /‘nAlx(nffZ) + e
A2
= (13)
+ Agx + /hx)
= Cg()X,
where
ch = Tl—j (A1, A2, =y Aurs 10,
A
- (14)
A, = 1.

Then the closed-loop system with the SFLC is
summarized as follows:

x = Ax+ Bu + g(x,u),
u = — ¢(D,), (15)
DI = ng,
where A = A,, B= K,By, and C} = K,C}. Now the
block diagram of Fig. 1 is changed to Fig. 2.
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( d

v() <
Fig. 2. Block diagram of the system with the nonlinear
SFLC.

As explained in Eq. (12), ¢(-) is a time-invariant
nonlinearity that satisfies the following sector condition
globally.

¢(DIL¢(Dy) — DI <0 (16)

Then we can guarantee that the proposed nonlinear
SFLC is absolutely stable.

Consider the system (15), where A is Hurwitz, (AB,Cd)
is a minimal realization of G(s) = C4(sI — A)"'B, and
the nonlinearity g(x,u) is bounded as follows:

lg(x, wllp < viixll, < 7 lixlly, (A7)
2

Eg
21IPll + 2227 IC I

IPlle = [Amx (P*P)]%, 020, €50, (18)

and ¢(-) is a time-invariant nonlinearity that satisfies
the sector condition (16) globally. Then the system is
1

absolutely stable if there is 7=0 with — P not an
eigenvalue of A such that
Re[l + (1 +j7w)tGUw)]l > 0, Vo= R, (19)
where
GGw) = Rel GGw)] + jIm[ Gljw)] . 20)

The above proposition is proved as follows: Consider

the following Lure-type Lyapunov function[9].
D,

V.= x"Px + 27;f0 ¢(o)rdo (21)

The derivative of V, along the trajectories of the
system is given by

V. = x"(PA + A"P)x + 2x"PBu
+ 2xPg + 27tDy¢
(22)
= xT(PA + A"P)x — 2x"PBy¢
+ 2xTPg + 29r¢Cys(Ax + Bu+ g).
From the sector condition, we can see that
—29(DIL¢(Dy) — D] = 0. (23)
Thus,
V. < xT(PA + ATP)x — 2x"PB¢ + 297¢4C4(Ax + Bu)
+ 2x"Pg + 291¢Cug — 2¢(¢ — rCyx) o

<x"(PA + ATP)x — 2xT(1:jB — 7zATCY — CHH¢
— (2 +292C B¢ + 2x"Pg + 277¢Cy8.



Choose 7 such that

2(1 + 71C4B) = w?. (25)

From the given condition (19) we see that there are
symmetric positive-definite matrices P and Py, a vector

L, and a positive constant ¢, such that[9]

PA+A"P = —L"L—¢,P
PB = CI + 3prATCY — wLT (26)
e, P = g, Py + g,.l1.
Therefore,
V. < —e,x " Px + 2x"Pg + 297¢Cqg
—[xTLTLx~ 2wéx LT + w*¢*]
27

< —e,x"Px — [Lx—w¢]" [Lx — wyl
+ 2lixll|Pllallelly + 222 C I3l llgll,.

From Eqgs. (17) and (18), the inequality (27) can be
summarized as follows:

Ve < — xT(g, P — g,D)x
(28)

< — g,xTPyx,

which is negative definite,

4. Numerical Example

Let’s consider a mass-damper—spring system in order
to show the feasibility of the proposed stability analysis.
The controlled plant is illustrated in Fig. 3, in which the

spring is a soft spring, m = ¢=1, and Kx;) = 3 — x%.
Then the nominal dynamic equations of the system are
as follows[8}:

(29)

where x, and x; represent the position and the

velocity, respectively.

k(x,}

"

Fig. 3. Mass-damper-spring system.

In this example, Ay, B;, C,, and g(x, ») are known
as Eq. (29). In the SFLC, we let the scaling factors of
K, and K, be equal to 2V1+4% and 1, respectively.
And 0.5 is used as the value of the design parameter A.
Like Table 1, five fuzzy sets are applied to both fuzzy
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variables. The max—product inference and the center of
gravity defuzzification are selected for a general fuzzy
logic system. Then we can obtain the value of r of 1.1.

Now we can get the closed-loop system of Eq. (15).
That 1s,

a=[% A1 s=0l =2

Therefore,

G(s) = CI(si—A)'B

(30)
2s+1
S+s+3°

From the Popov plot of Eq. (30), we can obtain the

value of 7 of 04. The value of w? is given by Eq.
(25). From Eq. (26),

LTL = T[(I+7A7)C,CHUI+7A)]

W
- ﬁ[PBCdT(H- 7A) (31)
+ (I+2AT)C,BTP) + #PBBTP.

From Eqgs. (26) and (31),
equation is derived.

the following Riccati

AP+ PA-PRP+ Q = 0, (32)
where
A=A+ 52-’-1— 5 BCI(I+74),
R = —L BB,
w
2
Q = #(H 7ANCICAI+74).

Let ¢,=0.83, solve Eq. (32) using MATLAB, we have

e - (3 18]

Then, lIPll, = 6.08. From Eq. (26), we get e, = 1.33.

Therefore, v of the condition (17) is given by
v < 0.078.

5. Concluding Remarks

We briefly explained a simple FLC called SFLC. The
SFLC had many advantages: The number of fuzzy rules
was greatly reduced compared to conventional FLC's,
and thus computational complexity was mitigated. Also,
generation, modification, and tuning of control rules were
very easy. Furthermore, the control performance of the
proposed SFLC was nearly the same as that of the
conventional skew-symmetric FLC's.

We showed that the SFLC is absolutely stable from
the sector bounded condition and also proved the
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feasibility of the proposed stability analysis through a
numerical example of a mass-damper—spring system.
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