• Title/Summary/Keyword: spread simulator

Search Result 67, Processing Time 0.025 seconds

Evaluation of Rutting Resistance and Moisture Sensitivity of Warm-Mix Asphalt Mixtures Using the Model Mobile Loading Simulator(MMLS3) (소형 포장 가속시험기를 이용한 중온 아스팔트 혼합물의 소성변형저항성 및 수분민감도 평가)

  • Lee, Jae-Jun;Kim, Yong-Joo;Yang, Sung-Lin;Kwon, Soo-Ahn;Hwang, Sung-Do
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.41-48
    • /
    • 2011
  • Warm-mix asphalt(WMA) technology has been developed to allow asphalt mixtures to be produced and compacted at a significantly lower temperature. The WMA technology was identified as one of means to lower emissions for $CO_2$ and has been spread so quickly in the world. Recently, two innovative WMA additives has been developed to reduce mixing and paving temperatures applied in asphalt paving process in Korea. Since the first public demonstration project in 2008, many WMA projects have successfully been constructed in national highways. In 2010, the WMA field trial was conducted on new national highway construction under Dae-Jeon Regional Construction Management Administration. The two different WMA loose mixtures(WMA and WMA-P) and a HMA mixture were collected at the asphalt plant to evaluate their mechanical performance in the laboratory. The Third-scale Model Mobile Loading Simulator(MMLS3) was adopted to evaluate rutting resistance and moisture damage under different traffic and environmental conditions. In this study, plant-produced WMA mixtures using two WMA additives along with the conventional hot mix asphalt(HMA) mixtures were evaluated with respect to their rutting resistance and moisture susceptibility using MMLS3. Based on the limited laboratory test results, plant-produced WMA mixtures are superior to HMA mixtures in rutting resistance and the moisture susceptibility. The WMA additive was effective for producing and compacting the mixture at $30^{\circ}C$ lower than the temperature for the HMA mixture.

Virtual Arrival Mechanism for IEEE 802.15.4 beacon enabled networks (비콘을 사용하는 IEEE 802.15.4 네트워크를 위한 가상 도착 메커니즘)

  • Ha, Jae-Yeol;Lee, Jong-Wook;Kwon, Wook-Hyun;Kim, Jung-Joon;Kim, Yong-Ho;Shin, Young-Hee
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.4 no.2
    • /
    • pp.45-51
    • /
    • 2005
  • For power constrained applications, IEEE 802.15.4 networks may be operated in beacon enabled mode with inactive period. h this paper, we propose the Virtual Arrival Mechanism (VAM) to avoid the congestion at the beginning of each contention access period (CAP). Virtual Arrival Mechanism (VAM) is a kind of traffic shaping that spread the traffics congested at the beginning of CAP into the whole CAP. By using VAM, collisions and energy consumption can be reduced. Finally, we evaluate the performance enhancement of VAM using NS-2 simulator.

  • PDF

A Study of Trace-driven Simulation for Multi-core Processor Architectures (멀티코어 프로세서의 명령어 자취형 모의실험에 대한 연구)

  • Lee, Jong-Bok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.9-13
    • /
    • 2012
  • In order to overcome the complexity and power problems of superscalar processors, the multi-core architecture has been prevalent recently. Although the execution-driven simulation is wide spread, the trace-driven simulation has speed advantages over the execution-driven simulation. We present a methodology to simulate multi-core architecture using trace-driven simulator. Using SPEC 2000 benchmarks as input, the trace-driven simulation has been performed for the cores ranging from 2 to 16 extensively. As a result, the 16-core processor resulted in 4.1 IPC and 13.3 times speed up over single-core processor on the average.

Optimal Planar Array Architecture for Full-Dimensional Multi-user Multiple-Input Multiple-Output with Elevation Modeling

  • Abubakari, Alidu;Raymond, Sabogu-Sumah;Jo, Han-Shin
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.234-244
    • /
    • 2017
  • Research interest in three-dimensional multiple-input multiple-output (3D-MIMO) beamforming has rapidly increased on account of its potential to support high data rates through an array of strategies, including sector or user-specific elevation beamforming and cell-splitting. To evaluate the full performance benefits of 3D and full-dimensional (FD) MIMO beamforming, the 3D character of the real MIMO channel must be modeled with consideration of both the azimuth and elevation domain. Most existing works on the 2D spatial channel model (2D-SCM) assume a wide range for the distribution of elevation angles of departure (eAoDs), which is not practical according to field measurements. In this paper, an optimal FD-MIMO planar array configuration is presented for different practical channel conditions by restricting the eAoDs to a finite range. Using a dynamic network level simulator that employs a complete 3D SCM, we analyze the relationship between the angular spread and sum throughput. In addition, we present an analysis on the optimal antenna configurations for the channels under consideration.

Simulation Study of Smoke Control Accordance with Zoning in the Atrium Space of High-rise Buildings (초고층 건물 아트리움 공간에서의 제연구획에 따른 시뮬레이션 연구)

  • Ryu, Hyungkyou;Bae, Sanghwan;Lee, Byungseok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.7
    • /
    • pp.335-342
    • /
    • 2014
  • The big issue in fire and life safety protection in atriums is that hot smoke can spread vertically via the atrium openings, and impact atrium floors remote from the fire. Three different strategies to provide fire and life safety protection for atrium space were evaluated in this study, using the FDS model. Strategy A is the atrium protection approach addressed in the Korean Building Fire Protection Code, where atria are required to be enclosed with fire shutters from the $2^{nd}$ floor to the atrium top, and the ground floor is allowed to open to the atrium; in this case, no smoke control is required. Strategy B is the atrium protection approach, with smoke control provided in accordance with NFPA 92B; in this case, no atrium floor is enclosed. Strategy C is the atrium protection approach, in which some of the upper atrium floors are enclosed (the case of the top atrium floor being enclosed is evaluated in this study), and atrium smoke control is also provided to protect the lower atrium floors.

ENHANCEMENT OF BOBSLEIGH SIMULATION REACTIVE FORCE

  • Ogino, Masatoshi;Taki, Tsuyoshi;Miyazaki, Shinya;Hasegawa, Junichi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.803-807
    • /
    • 2009
  • The bobsleigh is a winter sport which use a sled to slide down an ice-covered course. There is a big expectation for having a training environment and being able to train year round. At present, training is very limited due to the season or course facilities. A variety of VR (Virtual Reality) equipment has been developed in recent years, and it is beginning to spread. We have also made our contribution in bobsleigh simulation. The reactive force applied in our bobsleigh simulation is much smaller than that of a real bobsleigh. This paper proposes a method to enhance reactive force of bobsleigh simulation in real time. The reactive force is magnified instantly in the physically-based simulation. The Laplacian filter is applied to the sequence of reactive force, this technique is often used in the field of image processing. The simulation is comprised of four large scale surround screens and a 6-D.O.F. (Degree Of Freedom) motion system. We also conducted an experiment with several motion patterns to evaluate the effectiveness of enhancement. The experimental results proved useful in some cases.

  • PDF

A Study on Safety Assessment of Hydrogen Station (수소충전소의 안전성 평가 연구)

  • PYO, DON-YOUNG;KIM, YANG-HWA;LIM, OCK-TAECK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.499-504
    • /
    • 2019
  • Due to the rapid spread and low minimum ignition energy of hydrogen, rupture is highly likely to cause fire, explosion and major accidents. The self-ignition of high-pressure hydrogen is highly likely to ignite immediately when it leaks from an open space, resulting in jet fire. Results of the diffusion and leakage simulation show that jet effect occurs from the leakage source to a certain distance. And at the end of location, the vapor cloud explosion can be occurred due to the formation of hydrogen vapor clouds by built-up. In the result, it is important that depending on the time of ignition, a jet fire or a vapor cloud explosion may occur. Therefore, it is necessary to take into account jet effect by location of leakage source and establish a damage minimizing plan for the possible jet fire or vapor cloud explosion. And it is required to any kind of measurements such as an interlock system to prevent hydrogen leakage or minimize the amount of leakage when detecting leakage of gas.

Sidewalk Gaseous Pollutants Estimation Through UAV Video-based Model

  • Omar, Wael;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.1-20
    • /
    • 2022
  • As unmanned aerial vehicle (UAV) technology grew in popularity over the years, it was introduced for air quality monitoring. This can easily be used to estimate the sidewalk emission concentration by calculating road traffic emission factors of different vehicle types. These calculations require a simulation of the spread of pollutants from one or more sources given for estimation. For this purpose, a Gaussian plume dispersion model was developed based on the US EPA Motor Vehicle Emissions Simulator (MOVES), which provides an accurate estimate of fuel consumption and pollutant emissions from vehicles under a wide range of user-defined conditions. This paper describes a methodology for estimating emission concentration on the sidewalk emitted by different types of vehicles. This line source considers vehicle parameters, wind speed and direction, and pollutant concentration using a UAV equipped with a monocular camera. All were sampled over an hourly interval. In this article, the YOLOv5 deep learning model is developed, vehicle tracking is used through Deep SORT (Simple Online and Realtime Tracking), vehicle localization using a homography transformation matrix to locate each vehicle and calculate the parameters of speed and acceleration, and ultimately a Gaussian plume dispersion model was developed to estimate the CO, NOx concentrations at a sidewalk point. The results demonstrate that these estimated pollutants values are good to give a fast and reasonable indication for any near road receptor point using a cheap UAV without installing air monitoring stations along the road.

Performance Analysis of Implementation on Image Processing Algorithm for Multi-Access Memory System Including 16 Processing Elements (16개의 처리기를 가진 다중접근기억장치를 위한 영상처리 알고리즘의 구현에 대한 성능평가)

  • Lee, You-Jin;Kim, Jea-Hee;Park, Jong-Won
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.3
    • /
    • pp.8-14
    • /
    • 2012
  • Improving the speed of image processing is in great demand according to spread of high quality visual media or massive image applications such as 3D TV or movies, AR(Augmented reality). SIMD computer attached to a host computer can accelerate various image processing and massive data operations. MAMS is a multi-access memory system which is, along with multiple processing elements(PEs), adequate for establishing a high performance pipelined SIMD machine. MAMS supports simultaneous access to pq data elements within a horizontal, a vertical, or a block subarray with a constant interval in an arbitrary position in an $M{\times}N$ array of data elements, where the number of memory modules(MMs), m, is a prime number greater than pq. MAMS-PP4 is the first realization of the MAMS architecture, which consists of four PEs in a single chip and five MMs. This paper presents implementation of image processing algorithms and performance analysis for MAMS-PP16 which consists of 16 PEs with 17 MMs in an extension or the prior work, MAMS-PP4. The newly designed MAMS-PP16 has a 64 bit instruction format and application specific instruction set. The author develops a simulator of the MAMS-PP16 system, which implemented algorithms can be executed on. Performance analysis has done with this simulator executing implemented algorithms of processing images. The result of performance analysis verifies consistent response of MAMS-PP16 through the pyramid operation in image processing algorithms comparing with a Pentium-based serial processor. Executing the pyramid operation in MAMS-PP16 results in consistent response of processing time while randomly response time in a serial processor.

A study on the efficiency advancement for evacuation of the crews by ship structural improvement (선박 구조 개선을 통한 승무원의 피난 효율 향상을 위한 연구)

  • Kim, Wonouk;Lee, Myoungho;Kim, Jongsu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.342-348
    • /
    • 2014
  • Onshore great fires can normally be extinguished by firefighters using special firefighting equipment and its suitable method. However, offshore fires on the ships are to be extinguished by the crew without any supports from the onshore. Also, crews working on board are exposed to high risk of emergency evacuation due to the complicated structure arrangement of the ships and different accident types such as fire and ship collisions. As most of damage and loss of life in fire are associated with suffocation, shortening of evacuation time is an important factor to improve a survival rate. In this study, visibility in the accommodation area is analyzed by using the temperature and smoke flow which are obtained by the Fire Dynamic Simulator(FDS) as a Three-Dimensional Fire Analysis program to understand the survival rate of the crew upon the fire. The fire doors for most of ships are designed to close automatically when the fire alarm is activated. These automatic closing of the fire doors is a very effective system to delay the spread of flame and smoke flow for the unmanned spaces of the fire protected area. However, if the crew cannot escape within the estimated time, the crew inside the fire protected area will be damaged a lot. In this paper, the comparative analysis between the evacuations by using the fire door from the fire protected area and the suggested fire shielding structure in this study is carried out by the smoke flow rate and the temperature rise rate.