• Title/Summary/Keyword: spread parameter

Search Result 123, Processing Time 0.024 seconds

Mathematical Modeling of the Novel Influenza A (H1N1) Virus and Evaluation of the Epidemic Response Strategies in the Republic of Korea (수학적 모델을 이용한 신종인플루엔자 환자 예측 및 대응 전략 평가)

  • Suh, Min-A;Lee, Jee-Hyun;Chi, Hye-Jin;Kim, Young-Keun;Kang, Dae-Yong;Hur, Nam-Wook;Ha, Kyung-Hwa;Lee, Dong-Han;Kim, Chang-Soo
    • Journal of Preventive Medicine and Public Health
    • /
    • v.43 no.2
    • /
    • pp.109-116
    • /
    • 2010
  • Objectives: The pandemic of novel influenza A (H1N1) virus has required decision-makers to act in the face of the substantial uncertainties. In this study, we evaluated the potential impact of the pandemic response strategies in the Republic of Korea using a mathematical model. Methods: We developed a deterministic model of a pandemic (H1N1) 2009 in a structured population using the demographic data from the Korean population and the epidemiological feature of the pandemic (H1N1) 2009. To estimate the parameter values for the deterministic model, we used the available data from the previous studies on pandemic influenza. The pandemic response strategies of the Republic of Korea for novel influenza A (H1N1) virus such as school closure, mass vaccination (70% of population in 30 days), and a policy for anti-viral drug (treatment or prophylaxis) were applied to the deterministic model. Results: The effect of two-week school closure on the attack rate was low regardless of the timing of the intervention. The earlier vaccination showed the effect of greater delays in reaching the peak of outbreaks. When it was no vaccination, vaccination at initiation of outbreak, vaccination 90 days after the initiation of outbreak and vaccination at the epidemic peak point, the total number of clinical cases for 400 days were 20.8 million, 4.4 million, 4.7 million and 12.6 million, respectively. The pandemic response strategies of the Republic of Korea delayed the peak of outbreaks (about 40 days) and decreased the number of cumulative clinical cases (8 million). Conclusions: Rapid vaccination was the most important factor to control the spread of pandemic influenza, and the response strategies of the Republic of Korea were shown to delay the spread of pandemic influenza in this deterministic model.

Influence of Modelling Approaches of Diffusion Coefficients on Atmospheric Dispersion Factors (확산계수의 모델링방법이 대기확산인자에 미치는 영향)

  • Hwang, Won Tae;Kim, Eun Han;Jeong, Hae Sun;Jeong, Hyo Joon;Han, Moon Hee
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.2
    • /
    • pp.60-67
    • /
    • 2013
  • A diffusion coefficient is an important parameter in the prediction of atmospheric dispersion using a Gaussian plume model, and its modelling approach varies. In this study, dispersion coefficients recommended by the U. S. Nuclear Regulatory Commission's (U. S. NRC's) regulatory guide and the Canadian Nuclear Safety Commission's (CNSC's) regulatory guide, and used in probabilistic accident consequence analysis codes MACCS and MACCS2 have been investigated. Based on the atmospheric dispersion model for a hypothetical accidental release recommended by the U. S. NRC, its influence to atmospheric dispersion factor was discussed. It was found that diffusion coefficients are basically predicted from a Pasquill- Gifford curve, but various curve fitting equations are recommended or used. A lateral dispersion coefficient is corrected with consideration for the additional spread due to plume meandering in all models, however its modelling approach showed a distinctive difference. Moreover, a vertical dispersion coefficient is corrected with consideration for the additional plume spread due to surface roughness in all models, except for the U. S. NRC's recommendation. For a specified surface roughness, the atmospheric dispersion factors showed differences up to approximately 4 times depending on the modelling approach of a dispersion coefficient. For the same model, the atmospheric dispersion factors showed differences by 2 to 3 times depending on surface roughness.

Image Quality Evaluation of Medical Image Enhancement Parameters in the Digital Radiography System (디지털 방사선시스템에서 영상증강 파라미터의 영상특성 평가)

  • Kim, Chang-Soo;Kang, Se-Sik;Ko, Seong-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.6
    • /
    • pp.329-335
    • /
    • 2010
  • Digital imaging detectors can use a variety of detection materials to convert X-ray radiation either to light or directly to electron charge. Many detectors such as amorphous silicon flat panels, CCDs, and CMOS photodiode arrays incorporate a scintillator screen to convert x-ray to light. The digital radiography systems based on semiconductor detectors, commonly referred to as flat panel detectors, are gaining popularity in the clinical & hospital. The X-ray detectors are described between a-Silicon based indirect type and a-Selenium based direct type. The DRS of detectors is used to convert the x-ray to electron hole pairs. Image processing is described by specific image features: Latitude compression, Contrast enhancement, Edge enhancement, Look up table, Noise suppression. The image features are tuned independently. The final enhancement result is a combination of all image features. The parameters are altered by using specific image features in the different several hospitals. The image in a radiological report consists of two image evaluation processes: Clinical image parameters and MTF is a descriptor of the spatial resolution of a digital imaging system. We used the edge test phantom and exposure procedure described in the IEC 61267 to obtain an edge spread function from which the MTF is calculated. We can compare image in the processing parameters to change between original and processed image data. The angle of the edge with respect to the axes of detector was varied in order to determine the MTF as a function of direction. Each MTF is integrated within the spatial resolution interval of 1.35-11.70 cycles/mm at the 50% MTF point. Each image enhancement parameters consists of edge, frequency, contrast, LUT, noise, sensitometry curve, threshold level, windows. The digital device is also shown to have good uniformity of MTF and image parameters across its modality. The measurements reported here represent a comprehensive evaluation of digital radiography system designed for use in the DRS. The results indicate that the parameter enables very good image quality in the digital radiography. Of course, the quality of image from a parameter is determined by other digital devices in addition to the proper clinical image.

An estimation method of probability of infection using Reed - Frost model (Reed - Frost 모형을 이용한 전염병 감염 확률 추정)

  • Eom, Eunjin;Hwang, Jinseub;Choi, Boseung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.1
    • /
    • pp.57-66
    • /
    • 2017
  • SIR model (Kermack and McKendrik, 1927) is one of the most popular method to explain the spread of disease, In order to construct SIR model, we need to estimate transition rate parameter and recovery rate parameter. If we don't have any information of the two rate parameters, we should estimate using observed whole trajectory of pandemic of disease. Thus, with restricted observed data, we can't estimate rate parameters. In this research, we introduced Reed-Frost model (Andersson and Britton, 2000) to calculate the probability of infection in the early stage of pandemic with the restriction of data. When we have an initial number of susceptible and infected, and a final number of infected, we can apply Reed - Frost model and we can get the probability of infection. We applied the Reed - Frost model to the Vibrio cholerae pandemic data from Republic of the Cameroon and calculated the probability of infection at the early stage. We also construct SIR model using the result of Reed - Frost model.

Predicting Potential Distribution of Monochamus alternatus Hope responding to Climate Change in Korea (기후변화에 따른 솔수염하늘소(Monochamus alternatus) 잠재적 분포 변화 예측)

  • Kim, Jaeuk;Jung, Huicheul;Park, Yong-Ha
    • Korean journal of applied entomology
    • /
    • v.55 no.4
    • /
    • pp.501-511
    • /
    • 2016
  • Predicting potential spatial distribution of Monochamus alternatus, a major insect vector of the pine wilt disease, is essential to the spread of the pine wilt disease. The purpose of this study was to predict future domestic spatial distribution of M. alternatus by using the CLIMEX model considering the temperature condition of the vector's life history. To predict current distribution of M. alternatus, the administrative divisions data where the pine wilt spots caused by M. alternatus were found from 2006 to 2014 and the 10-year mean climate observed data in 68 meteorological stations from 2006 to 2015 were used. Eight parameter sets were chosen based on growth temperature range of M. alternatus reported in preceding researches. Error matrix method was utilized to select and simulate the parameter sets showing the highest correlation with the actual distribution. Regarding the future distribution of M. alternatus, two periods of 2050s(2046-2055) and 2090s(2091-2100) were predicted using the projected climate data of RCP 8.5 Scenario generated from Korea Meteorological Administration. Overall results of M. alternatus distribution simulation were fit in the actual distribution; however, overestimation in Seoul Metropolitan area and Chungnam Region were shown. Gradual expansion of M. alternatus would be expected to nationwide from western and southern coastal areas of Korea peninsula.

Experimental Study of Fire Characteristics by Isocyanate Functional Parameter (이소시아네이트 관능기 매개인자에 의한 화재 특성의 실험적 연구)

  • Lee, Jae-Geol;Han, Kyoung-Ho;Jo, Hyung-Won;Yoon, Do-Young
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.27-37
    • /
    • 2022
  • With the recent increase in the spread of ESS (Electric Storage System), the damage to human life and property is also rapidly increasing due to continuous fires caused by ESS. In the manufacture of urethane sandwich panels used in ESS, it is necessary to improve the flame retardant performance. In this study, in order to realize the flame retardant properties of flexible polyurethane foam, the effect of the tissue density of the product due to the change of the isocyanate functional group parameter that changes the physical properties of the product on the fire performance was studied. The product was manufactured by changing the density of the urethane structure, and combustion performance tests, gas toxicity tests, and smoke density tests were performed. As a result, it was confirmed that the total amount of heat released had excellent performance when the isocyanate functional group was high, and had no correlation with the maximum heat release rate. When the value of the isocyanate functional group was 2.7 or more, the collapse of the shape could be prevented. In the gas hazard test, the performance was increased when the isocyanate functional group was relatively high, so a flame retardant for the Char system, which had a dense structure and easy to form a carbonized film, was added. confirmed to be. Therefore, as a result of this study, it is thought that it will be possible to lay the foundation for the development of a flame retardant to replace the cheap urethane sandwich panel used in the past.

Parameter Study of Impact Characteristics for a Vacuum Interrupter Considering Dynamic Material Properties (동적 물성치를 고려한 진공 인터럽터 충격특성의 영향인자 분석)

  • Lim, Ji-Ho;Song, Jeong-Han;Huh, Hoon;Park, Woo-Jin;Oh, Il-Seong;Ahn, Gil-Young;Choe, Jong-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.924-931
    • /
    • 2002
  • Vacuum interrupters in order to be used in various switch-gear components such as circuit breakers, distribution switches, contactors, etc. spread the arc uniformly over the surface of the contacts. The electrodes of vacuum interrupters are made of sinter-forged Cu-Cr materials for good electrical and mechanical characteristics. Since the closing velocity is 1-2m/s and impact deformation of the electrode depends on the strain rate at that velocity, the dynamic behavior of the sinter-forged Cu-Cr is a key to investigate the impact characteristics of the electrodes. The dynamic response of the material at the high strain rate is obtained from the split Hopkinson pressure bar test using disc-type specimens. Experimental results from both quasi-static and dynamic compressive tests are Interpolated to construct the Johnson-Cook model as the constitutive relation that should be applied to simulation of the dynamic behavior of the electrodes. The impact characteristics of a vacuum interrupter are investigated with computer simulations by changing the value of five parameters such as the initial velocity of a movable electrode, the added mass of a movable electrode, the wipe spring constant, initial offset of a wipe spring and the virtual fixed spring constant.

Optimal Parameter Selection of H.264 Encoder For Mobile Devices (모바일 기기를 위한 H.264 인코더의 최적 매개변수의 결정)

  • Ryu, Minhee;Kim, Hyungshin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4780-4785
    • /
    • 2012
  • As many mobile devices such as smart phones and tablets are widely spread, optimized mobile video encoder used during video recording application is needed. In this paper, we implemented H.264/AVC base profile video encoder on a mobile device and empirically optimized control parameters of the encoder. As the experiment, we more than 100 test cases were designed with varying Lagrangian optimization, Hadamard Transform, search range, I-frame period, and reference frames. During the experiment, we measured picture quality, bit-rate, encoding time, motion estimation time, and power consumption. From the result, we can determine optimal values for the H.264 control parameters.

Development of Equipment Control System based on DB Access Method for Industrial IoT (Industrial IoT를 위한 데이터베이스 접근 기반 장비 제어 시스템 개발)

  • Cho, Kyoung-woo;Jeon, Min-ho;Oh, Chang-heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1142-1147
    • /
    • 2016
  • Recently, IoT(Internet of Things) has been extensively researching to provide intelligent services by fusing ICT. Especially with the advent of Germany's Industry 4.0, it is emphasized the importance of the industrial IoT to maximize the production capacity. Accordingly, a lot of efforts to spread the smart factory base of industrial IoT have continued domestically as well as abroad. But the current smart factory systems have controlled equipment using the data declared in the embedded systems. Therefore, it is difficult to control environment that lots of equipment is installed. In this paper, we proposed equipment control system based on data base access method for industrial IoT. This method controls the equipment using data base from parameter of equipment. Through experiments that the system apply to mold shot system with a number of variables, it is shown that the proposed method can efficiently control a number of devices.

Representation of Model Uncertainty in the Short-Range Ensemble Prediction for Typhoon Rusa (2002) (단기 앙상블 예보에서 모형의 불확실성 표현: 태풍 루사)

  • Kim, Sena;Lim, Gyu-Ho
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.1-18
    • /
    • 2015
  • The most objective way to overcome the limitation of numerical weather prediction model is to represent the uncertainty of prediction by introducing probabilistic forecast. The uncertainty of the numerical weather prediction system developed due to the parameterization of unresolved scale motions and the energy losses from the sub-scale physical processes. In this study, we focused on the growth of model errors. We performed ensemble forecast to represent model uncertainty. By employing the multi-physics scheme (PHYS) and the stochastic kinetic energy backscatter scheme (SKEBS) in simulating typhoon Rusa (2002), we assessed the performance level of the two schemes. The both schemes produced better results than the control run did in the ensemble mean forecast of the track. The results using PHYS improved by 28% and those based on SKEBS did by 7%. Both of the ensemble mean errors of the both schemes increased rapidly at the forecast time 84 hrs. The both ensemble spreads increased gradually during integration. The results based on SKEBS represented model errors very well during the forecast time of 96 hrs. After the period, it produced an under-dispersive pattern. The simulation based on PHYS overestimated the ensemble mean error during integration and represented the real situation well at the forecast time of 120 hrs. The displacement speed of the typhoon based on PHYS was closest to the best track, especially after landfall. In the sensitivity tests of the model uncertainty of SKEBS, ensemble mean forecast was sensitive to the physics parameterization. By adjusting the forcing parameter of SKEBS, the default experiment improved in the ensemble spread, ensemble mean errors, and moving speed.