Browse > Article
http://dx.doi.org/10.7465/jkdi.2017.28.1.57

An estimation method of probability of infection using Reed - Frost model  

Eom, Eunjin (Department of Statistics, Daegu University)
Hwang, Jinseub (Department of Computer Science and Statistics, Daegu University)
Choi, Boseung (Department of Applied Statistics, Korea University)
Publication Information
Journal of the Korean Data and Information Science Society / v.28, no.1, 2017 , pp. 57-66 More about this Journal
Abstract
SIR model (Kermack and McKendrik, 1927) is one of the most popular method to explain the spread of disease, In order to construct SIR model, we need to estimate transition rate parameter and recovery rate parameter. If we don't have any information of the two rate parameters, we should estimate using observed whole trajectory of pandemic of disease. Thus, with restricted observed data, we can't estimate rate parameters. In this research, we introduced Reed-Frost model (Andersson and Britton, 2000) to calculate the probability of infection in the early stage of pandemic with the restriction of data. When we have an initial number of susceptible and infected, and a final number of infected, we can apply Reed - Frost model and we can get the probability of infection. We applied the Reed - Frost model to the Vibrio cholerae pandemic data from Republic of the Cameroon and calculated the probability of infection at the early stage. We also construct SIR model using the result of Reed - Frost model.
Keywords
Epidemic model; Reed - Frost model; SIR model; vibrio cholerae;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Abbey, H. (1952). An examination of the Reed-Frost theory of epidemics. Human Biology, 24, 201-233.
2 Andersson, H. and Britton, T. (2000). Stochastic epidemic models and their statistical analysis, Springer, New York.
3 Bernoulli, D. and Blower, S. (2004). An attempt at a new analysis of the mortality caused by smallpow and of the advantages of inoculation to prevent it. Reviews in Medical Virology, 14, 275-288.   DOI
4 Brauer, F. and Castillo-Chavez, C. (2001). Mathematical models in population biology and epidemiology, Springer, New York.
5 Choi, B. and Rempala, G. A. (2012). Inference for discretely observed stochastic kinetic networks with applications to epidemic modeling. Biostatistics, 13, 153-165.   DOI
6 Daley, D. J. and Gany, J. (2005). Epidemic Modeling: An Introduction, Cambridge University Press, New York.
7 Deijfen, M. (2011). Epidemics and vaccination on weighted graphs. Mathematical biosciences, 232, 57-65.   DOI
8 Eisenberg, M. C., Robertson, S. L. and Tien, J. H. (2012). Identifiability and estimation of multiple transmission pathways in cholera and waterborne disease. Journal of Theoretical Biology, 324, 84-102.
9 Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry, 81, 2340-2361.   DOI
10 Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P. and Kummer, U. (2006). COPASI-a complex pathway simulator. Bioinformatics, 22, 3067-3074.   DOI
11 Hwang, N. A., Jeong, B. Y., Lim, Y. C. and Park, J. S. (2007). Diseases data analysis using sir nonlinear regression model. Journal of The Korean Data Analysis Society, 9, 49-59.
12 Kermack, W. O. and McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences, 115, 700-721.   DOI
13 Lim, Y., Do, M. and Choi, B. (2016). A construction of susceptible - infected - removed model using Korean MERS pandemic data. Journal of the Korean Data Analysis Society, 18, 105-115.
14 Kim, C. S. (2010). Development and evaluation of influenza confinement strategy using mathematical estimating model, Final report, Korea Centers for Disease Control & Prevention, Osong, Korea.
15 Lee, J. H., Murshed, M. S. and Park, J. S. (2009). Estimation of infection distribution and prevalence number of Tsutsugamushi fever in Korea. Journal of the Korean Data & Information Science Society, 20, 149-158.
16 Lim, H. (2007). Contributing factors of infectous waterborne and foodborne outbreaks in Korea. Journal of the Korean Medical Association, 50, 582-591.   DOI
17 Mendes, P., Hoops, S. and Gauges, R. (2009). Computational modeling of bochemical networks using COPASI. Methods in Molecular Biology-Clifton then Totowa, 500, 17-60.
18 Ryu, S. and Choi, B. (2015). Development of epidemic model using the stochastic method. Journal of the Korean Data & Information Science Society, 26, 301-312.   DOI
19 Neurirth, E., Arganbright, D. (2004). The active modeler: Mathematical modeling with Microsoft Excel, Tnomson Brooks/Cde, Belmont.
20 Profitos, M., Mouhaman, A., Lee, S., Garabed, R., Moritz, M., Piperata, B., Tien, J., Bisesi, M. and Lee, J. (2014). Muddying the Waters: A new area of concern for drinking water contamination in Cameroon. International Journal of Environmental Research and Public Health, 11, 12454-12526.   DOI
21 Trottier, H. and Philippe, P. (2001). Deterministic modeling of infectious diseases: Theory and methods. The Internet Journal of Infectious Disease, 1.
22 Schaber, J. (2012). Easy parameter identifiability analysis with COPASI. Bio systems, 110, 183-185.   DOI
23 Seo, M. and Choi, B. (2015). An estimation method for stochastic epidemic model. Journal of the Korean Data Analysis Society, 17, 1247-1259.