• Title/Summary/Keyword: sport shoe

Search Result 76, Processing Time 0.02 seconds

The Differences of the Normalized Jerk According to Shoes, Velocity and Slope During Walking (보행시 신발, 속도, 그리고 경사도에 따른 정규 저크의 차이)

  • Han, Young-Min;Choi, Jin-Seung;Kim, Hyung-Sik;Lim, Young-Tae;Yi, Jeong-Han;Tack, Gye-Rae;Yi, Kyung-Ok;Park, Seung-Bum
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.1-8
    • /
    • 2006
  • The purpose of this study was to evaluate normalized jerk according to shoes, slope, and velocity during walking. Eleven different test subjects used three different types of shoes (running shoes, mountain climbing boots, and elevated forefoot walking shoes) at various walking speeds(1.19, 1.25, 1.33, 1.56, 1.78, 1.9, 2, 2.11, 2.33m/sec) and gradients(0, 3, 6, 10 degrees) on a treadmill. Since there were concerns about using the elevated forefoot shoes on an incline, these shoes were not used on a gradient. Motion Analysis (Motion Analysis Corp. Santa Rosa, CA USA) was conducted with four Falcon high speed digital motion capture cameras. Utilizing the maximum smoothness theory, it was hypothesized that there would be differences in jerk according to shoe type, velocity, and slope. Furthermore, it was assumed that running shoes would have the lowest values for normalized jerk because subjects were most accustomed to wearing these shoes. The results demonstrated that elevated forefoot walking shoes had lowest value for normalized jerk at heel. In contrast, elevated forefoot walking shoes had greater normalized jerk at the center of mass at most walking speeds. For most gradients and walking speeds, hiking boots had smaller medio-lateral directional normalized jerk at ankle than running shoes. These results alluded to an inverse ratio for jerk at the heel and at the COM for all types of shoes. Furthermore, as velocity increased, medio-lateral jerk was reduced for all gradients in both hiking boots and running shoes. Due to the fragility of the ankle joint, elevated forefoot walking shoes could be recommended for walking on flat surfaces because they minimize instability at the heel. Although the elevated forefoot walking shoes have the highest levels of jerk at the COM, the structure of the pelvis and spine allows for greater compensatory movement than the ankle. This movement at the COM might even have a beneficial effect of activating the muscles in the back and abdomen more than other shoes. On inclines hiking boots would be recommended over running shoes because hiking boots demonstrated more medio-lateral stability on a gradient than running shoes. These results also demonstrate the usefulness of normalized jerk theory in analyzing the relationship between the body and shoes, walking velocity, and movement up a slope.

The Comparative Analysis of Wearing Roller Shoes and Jogging Shoes on Kinematic Characteristics in the Lower Extremity during Walking (롤러 신발과 조깅 신발 착용 후 보행 시 하지 분절의 운동학적 특성 비교 분석)

  • Jang, Jae-Ik;Chae, Woen-Sik;Kang, Nyeon-Ju;Yoon, Chang-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.399-406
    • /
    • 2009
  • The purpose of this study was to compare the effect of wearing roller shoes and jogging shoes on kinematic characteristics in lower extremity during walking. Eight male middle school students(age: $15.0{\pm}0.0^{\circ}$ yrs, height $175.9{\pm}6.6cm$, weight: $616.3{\pm}84.9$ N) who have no musculoskeletal disorder were recruited as the subjects. Temporal parameters, step length, stride length, center of mass, velocity of CM, angle of segment, angular velocity and range of motion were determined for each trial. For each dependent variable, paired t-test was performed to test if significant difference existed between shoe conditions(p < .05). The results showed that stride length and velocity of CM in wearing roller shoes were significantly less than those found in wearing jogging shoes. These indicated that walking patterns may be changed by different shoe conditions and unstable braking condition because of wheel. Angle of ankle joint at LHC1 and LHC2 in wearing roller shoes was greater than the corresponding value for wearing jogging shoes. It seems that the ankle joints are locked in an awkward fashion at the heel contact to compensate for imbalance. Otherwise, dorsi flexion was not produced at the heel contact point in wearing roller shoes.

Effects for Running Shoes with Resilience of Midsole on Biomechanical Properties (미드솔의 반발탄성이 러닝화의 생체역학적 특성에 미치는 영향)

  • Yoo, Chan-Il;Won, Yonggwan;Kim, Jung-Ja
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.1
    • /
    • pp.103-111
    • /
    • 2015
  • Objective : The purpose of this study was to evaluate the effect for running shoes with resilience of midsole on biomechanical properties. Methods : 10 healthy males who had no history of injury in the lower extremity with an average age of 26.5 year(SD=1.84), height of 172.22 cm(SD=4.44) and weight of 67.51 kg(SD=6.17) participated in this study. All subjects ran on the treadmill wearing three different running shoes. Foot pressure data was collected using Pedar-X system(Novel Gmbh, Germany) operating at 100 Hz. Surface EMG signals for biceps femoris, rectus femoris, vastus lateralis, medial lateralis, tibialis anterior, medial gastrocnemius, soleus and peroneus longus were acquired at 1000 Hz using Bignoli 8 System(Delsys Inc., USA). To normalize the difference of the magnitude of muscle contractions, it was expressed as a percentage relative to the maximum voluntary contraction (MVC). The impact resilience of the midsole data was collected using Fastcam SA5 system(Photron Inc., USA). Collected data was analyzed using One-way ANOVA in order to investigate the effects of each running shoes. Results : TPU midsole was significantly wider in contact area than EVA, TPE midsole in midfoot and higher in EMG activity than EVA midsole at biceps femoris. TPE midsole was significantly wider in contact area than EVA midsole in rearfoot and higher in peak pressure than EVA midsole in forefoot. EVA midsole was significantly higher in EMG activity than TPU midsole at tibia anterior. In medial resilience of midsoles, TPE midsole was significantly higher than EVA, TPU midsole. Conclusion : TPU midsole can reduce the load on the midfoot effectively and activate tibialis anterior, biceps femoris to give help to running.

Research about the Effect that Taekwondo Shoes have on the Performance and Friction during the Turing and Turning Back Kick (태권도 돌려차기와 몸돌려 후려차기시 태권도화 착용에 따른 기계적 마찰력과 태권도 수행력 연구)

  • Park, Seung-Bum;Lee, Jung-Ho
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.1
    • /
    • pp.117-127
    • /
    • 2008
  • The purpose of this study was to investigate the relationship between research of mechanical friction and Taekwondo kick performance. For this a Taekwondo kick performance test, A.F.T.S.(Automated Footwear Testing System) and survey about fitting was used. There was a statistically significant difference between all the Taekwondo shoe types. While performing the roundhouse kick there were statistically significant differences in the peak free moment(p=.01) and peak plantar pressure between type A and B. Comfort testing revealed that there were statistically significant difference between type A and B in the five comfort variables tested but not between type B and Type C. There was statistically significant differences between each of the Taekwondo shoes but there was no relationship between the performance and the results of the survey.

Effects of 12-week Wearing of the Unstable Shoes on the Standing Posture and Gait Mechanics (12주간의 불안정성 신발 착용이 직립 자세 및 보행역학에 미치는 영향)

  • Park, Ki-Ran;An, Song-Yi;Lee, Ki-Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.165-172
    • /
    • 2006
  • The purpose of this study was to determine effects of 12-week wearing of unstable shoe on the standing posture and gait mechanics. Nine healthy men were asked to wear the unstable shoes for 12-week and walk for 30 minute everyday. Their standing posture and gait mechanics were measured before and after treatment. Standing posture was measured for each side(anterior, posterior, lateral) for standing position. And gait analysis was measured joint angle of a right lower limb between first right heel contact and second right heel contact. Kinematic data were collected using video camera at 30 frame per seconds. Statistical analysis was paired t-test(p<.05) to compare before training with after that. A head tilt angle was significantly decreased for posterior side(p<.05). The angle of between center of line and surface was significantly decreased at midstance and take off during walking(p<.05). Ankle dorsiflexion significantly increased at heel contact2(p<.05) and ankle plantarflexion significantly increased at midstance and midswing(p<.05). The increase of ankle dorsiflexion showed that our results consisted with previous study. In conclusion, there was not large significant difference in static standing posture but joint angle of lower limb represented many changes with increasing of ankle motion during walking. These were of benefit to body by increasing leg muscle activity but it was necessary for man having a ankle problem to consider. Further studies concerning optimum outsole angle of unstable shoes are necessary.

The Influence of Midsole Hardness of Running Shoes on Shoes Flex Angle during Running (달리기 시 운동화 중저의 경도가 신발굴곡각도의 크기에 미치는 영향)

  • Mok, Seung-Han;Kwak, Chang-Su;Kwon, Oh-Bok
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.2
    • /
    • pp.85-103
    • /
    • 2004
  • This study was conducted to determine what effects would the midsole hardness of running shoes have on shoe flex angle and maximum propulsive force. Furthermore, the relationship between the shoes flex angle and maximum propulsive force was elucidated in order to provide basic data for developing running shoes to improve sports performances and prevent injuries. The subjects employed in the study were 10 college students majoring in physical education who did not have lower limbs injuries for the last one year and whose running pattern was rearfoot strike pattern of normal foot. The shoes used in this study had 3different hardness, shore A 40(soft), 50(medium) and 60(hard). The subjects were asked to run at a speed of $4{\pm}0.08m/sec$, and their movements were videotaped with 2 S-VHS video-cameras and measured with a force platform. And the following results were obtained after analyzing and comparing the variables. 1. Although the minimum angle of shoes flex angle was estimated to appear at SFA4, it appeared at SFA2 except in those shoes with the hardness of 40. 2. The minimum angle of shoes flex angle was $145.1^{\circ}$ with barefoot. Among the shoes with different hardness, it was the smallest when the hardness was 50 at $149.9^{\circ}$. The time to the minimum angle was 70.7% of the total ground contact time. 3. Maximum propulsive force according to midsole hardness was the largest when the hardness was 50 at $1913.9{\pm}184.3N$. There was a low correlation between maximum propulsive force and shoes flex angle.

Improvement of Frictional Property of BR/CIIR Composite Rubber for Shoes Outsole (운동화 겉창용 BR/CIIR 고무 복합체의 마찰특성 향상에 대한 연구)

  • Pyo, Kyungduk;Choi, Jungsu;Lee, Jongnyun;Park, Chacheol
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.255-261
    • /
    • 2013
  • This paper introduced a new preparation method of a composite rubber by mixing BR (butadiene rubber) and CIIR (chloro-isobutyl rubber) for the purpose of improving frictional property of BR. Since BR has high abrasion and low frictional properties, its frictional property needs to be enhanced in order to be used as an outsole of a sport shoe. Such enhancement was difficult to achieve by simple blending of CIIR. In here, CIIR was added into BR matrix after CIIR was pre-crosslinked for a time period, and both high frictional and high abrasion resistance properties were achieved. Our experiments showed that the composite rubber blend of 60% of BR and 40% of pre-crosslinked CIIR had desired BR's frictional and abrasion resistance properties for sport shoes.

Influence of Midsole Hardness on Vertical Ground Reaction force and Heel Strike Angle during Men's and Women's Running (남녀 주행 시 수직 지면반력 및 착지 각도에 미치는 신발 중저 경도의 영향)

  • Lee, Yong-Ku;Kim, Yoon-Hyuk
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.379-386
    • /
    • 2009
  • During running, the human body experiences repeated impact force between the foot and the ground. The impact force is highly associated with injury of the lower extremity, comfort and running performance. Therefore, shoemakers have developed shoes with various midsole properties to prevent the injury of lower extremity, improve the comfort and enhance the running performance. The purpose of this study is to investigate the influence of midsole hardness on vertical ground force and heel strike angle during men's and women's running. Five male and five female expert runners consented to participate in the study and ran at a constant speed with three different pairs of shoes with soft, medium and hard midsole respectively. In conclusion, regardless of gender, there was ill significant difference among three shoes in maximum vertical ground reaction force, impact force peak and stance time. However, the loading time decreased and the loading rate increased as the midsole became harder. Female subjects showed more sensitive reaction with respect to the midsole hardness, while male subjects showed subtle difference. The authors expect to apply this results for providing a guideline for utilizing proper midsole hardness of gender-specific shoe.

Changes in Knee Joint Loading on Infilled Turf with Different Soccer Cleat Designs (축구화 스터드 형태에 따른 무릎 모멘트의 변화)

  • Park, Sang-Kyoon;Lee, Joong-Sook;Park, Seung-Bum;Stefanyshyn, Darren
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.369-377
    • /
    • 2009
  • The purpose of this study was to determine the relationship between different soccer cleat designs and knee joint moments. Twelve physically active males (mean(SD): age: 26.4(6.2)yrs; height: 176.4(4.1)cm; mass: 74.0 (7.4)kg) were recruited Kinematic and force plate data were collected for all subjects during normal running and a $45^{\circ}$ cutting maneuver, called a v-cut. Both motions were performed at $4.0{\pm}0.2\;m/s$ on infilled artificial turf with three pairs of soccer cleats of different sole plate designs, and one pair of neutral running shoes. Inverse dynamics were used to calculate three dimensional knee joint moments, with repeated measures ANOVA and post hoc paired Student's t-test used to determine significance between shoe conditions. Significant differences were found in the extension moments of the knee for running trials, and for external rotation and adduction moments in the v-cutting trials. Knee moments were greater in v-cut than running, and the traditional soccer cleats (Copa Mondial and World Cup) tended to result in greater knee moments than the Nova runner or TRX soccer cleat. Cleat design was found to influence 3-dimensional knee moments in a v-cut maneuver. In the translational traction test, there were significant differences between all conditions. In the rotational traction test, friction with soccer shoes were greater than friction with running shoes. However, no differences were found between soccer shoes. Higher moments may lead to increased loads and stresses on knee joint structures, and thus, greater injury rates.

A Comparative Study of Characters of Muscle Activity in Lower Limb and Gait Pattern on Type of Heel Rockers (신발 아웃솔의 굴곡 형태에 따른 하지근육활동의 특성과 보행 패턴의 비교연구)

  • An, Song-Y;Kim, Sang-Bum;Lee, Ki-Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.111-119
    • /
    • 2007
  • The purpose of this study was to investigate muscle activity and gait pattern in lower limb depending on the outsole of heel rockers. Fifteen healthy men volunteered for this experiment. Each subject performed totally three trails with two pairs of different heel rocker shoes and a pair of normal running shoes at speed of 1.33m/s for 1 minute during walking on a treadmill. Kinematic data gathered in 100Hz was recorded and analyzed by using the 3D motion capture system to measure the trunk tilt and joint angle of the right lower limb. And the lower extremity muscle activities were simultaneously recorded in 1000Hz and assessed by using EMG. The statistical analysis was the one-way ANOVA with the repeated measures to compare among the three kinds of shoes. The level of statistical significance for all tests was 0.05. Joint angle of lower limb was showed statistically significant different in MST(hip joint), LHS(ankle joint), and RTO(knee and ankle joint). Muscle activity of rectus femoris and biceps femoris was statistically increased in both heel rocker shoes during gait cycle on treadmill. The maximum peak time of tibialis anterior in the negative heel rocker showed the delay of approximately 23.8%time than normal shoes. Gait pattern variability of the negative heel rocker was increased in the first half of the stance phase and the variability of the positive heel rocker was increased in the terminal stance phase. In Conclusion, stability was decreased in between joints of lower limb on positive heel rocker than negative heel rocker. This study found that there were different joint angle, muscle activity, gait pattern and coordinate system of the lower limb in each kind of shoes. These unstability affected the lower extremity and the whole body. A further study has to be continued with study of rehabilitation and exercise for a long-term.