• Title/Summary/Keyword: spline curve

Search Result 205, Processing Time 0.026 seconds

Dynamic Temperature Compensation System Development for the Accelerometer with Modified Spline Interpolation (Curve Fitting) (변형 스플라인 보간법(곡선맞춤)을 통한 가속도 센서의 동적 온도 보상 시스템 개발)

  • Lee, Hoochang;Go, Jaedoo;Yoo, Kwangho;Kim, Wanil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.114-122
    • /
    • 2014
  • Sensor fusion is the one of the main research topics. It offers the highly reliable estimation of vehicle movement by processing and mixing several sensor outputs. But unfortunately, every sensor has drift which degrades the performance of sensor. It means a single degraded sensor output may affect whole sensor fusion system. Drift in most research is ideally assumed to be zero because it's usually a nonlinear model and has sample variation. Plus, it's very difficult for the acceleration to separate drift from the output signal since it contains many contributors such as vehicle acceleration, slope angle, pitch angle, surface condition and so on. In this paper, modified spline interpolation is introduced as a dynamic temperature compensation method covering sample variation. Using the last known output and the first initial output is suggested to build and update compensation factor. When the system has more compensation data, the system will have better performance of compensated output because of the regression compensation model. The performance of the dynamic temperature compensation system is evaluated by measuring offset drift between with and without the compensation.

Timing Jitter Analysis and Improvement Method using Single-Shot LiDAR system (Single-Shot LiDAR system을 이용한 Timing Jitter 분석 및 개선 방안)

  • Han, Mun-hyun;Choi, Gyu-dong;Song, Min-hyup;Seo, Hong-seok;Mheen, Bong-ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.172-175
    • /
    • 2016
  • Time of Flight(ToF) LiDAR(Light Detection And Ranging) technology has been used for distance measurement and object detection by measuring ToF time information. This technology has been evolved into higher precision measurement field such like autonomous driving car and terrain analysis since the retrieval of exact ToF time information is of prime importance. In this paper, as a accuracy indicator of the ToF time information, timing jitter was measured and analyzed through Single-Shot LiDAR system(SSLs) mainly consisting of 1.5um wavelength MOPA LASER, InGaAs Avalanche Photodiode(APD) at 31M free space environment. Additionally, we applied spline interpolation and multiple-shot averaging method on measured data through SSLs to improve ToF timing information.

  • PDF

Estimating dose-response curves using splines: a nonparametric Bayesian knot selection method

  • Lee, Jiwon;Kim, Yongku;Kim, Young Min
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.3
    • /
    • pp.287-299
    • /
    • 2022
  • In radiation epidemiology, the excess relative risk (ERR) model is used to determine the dose-response relationship. In general, the dose-response relationship for the ERR model is assumed to be linear, linear-quadratic, linear-threshold, quadratic, and so on. However, since none of these functions dominate other functions for expressing the dose-response relationship, a Bayesian semiparametric method using splines has recently been proposed. Thus, we improve the Bayesian semiparametric method for the selection of the tuning parameters for splines as the number and location of knots using a Bayesian knot selection method. Equally spaced knots cannot capture the characteristic of radiation exposed dose distribution which is highly skewed in general. Therefore, we propose a nonparametric Bayesian knot selection method based on a Dirichlet process mixture model. Inference of the spline coefficients after obtaining the number and location of knots is performed in the Bayesian framework. We apply this approach to the life span study cohort data from the radiation effects research foundation in Japan, and the results illustrate that the proposed method provides competitive curve estimates for the dose-response curve and relatively stable credible intervals for the curve.

Construction of a reference stature growth curve using spline function and prediction of final stature in Korean (스플라인 함수를 이용한 한국인 키 기준 성장 곡선 구성과 최종 키 예측 연구)

  • An, Hong-Sug;Lee, Shin-Jae
    • The korean journal of orthodontics
    • /
    • v.37 no.1 s.120
    • /
    • pp.16-28
    • /
    • 2007
  • Objective: Evaluation of individual growth is important in orthodontics. The aim of this study was to develop a convenient software that can evaluate current growth status and predict further growth. Methods: Stature data of 2 to 20 year-old Koreans (4893 boys and 4987 girls) were extracted from a nationwide data. Age-sex-specific continuous functions describing percentile growth curves were constructed using natural cubic spline function (NCSF). Then, final stature prediction algorithm was developed and its validity was tested using longitudinal series of stature measurements on randomly selected 200 samples. Various accuracy measurements and analyses of errors between observed and predicted stature using NCSF growth curves were performed. Results: NCSF growth curves were shown to be excellent models in describing reference percentile stature growth curie over age. The prediction accuracy compared favorably with previous prediction models, even more accurate. The current prediction models gave more accurate results in girls than boys. Although the prediction accuracy was high, the error pattern of the validation data showed that in most cases, there were a lot of residuals with the same sign, suggestive of autocorrelation among them. Conclusion: More sophisticated growth prediction algorithm is warranted to enhance a more appropriate goodness of model fit for individual growth.

Comparison Analysis of The results of IRMA Test among Different Equipment According to Algorithm change. (IRMA 검사법 중 알고리즘 변경에 따른 장비 간 결과값 비교분석)

  • Kim, Jung In;Kwon, Won Hyun;Lee, Kyung Jae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.2
    • /
    • pp.43-50
    • /
    • 2019
  • Purpose The principle of nuclear medicine test is divided into two main categories: competition(radioimmunoassay, RIA) and noncompetitive reaction(Immunoradiometric assay, IRMA). It is known that the curve fitting method, which is commonly used in inspection field, uses Spline interpolation in RIA method and Linear interpolation method in IRMA method. Among them, the insulin test using the IRMA test showed a significant difference, especially at low concentrations, despite the same algorithm of linear interpolation between fully automated radio immunoassay analyzers. In this study, we aim to obtain results from applying two different of algorithm using fully automated radio immunoassay analyzers including Gamma pro, Gamma 10, Cobra, and SR300. Materials and Methods A total of 30 test samples were selected for the test of TSH, ferritin, C-peptide, and insulin serum levels. Test was performed by IRMA method. We compared the difference in the results of applying the linear interpolation method and the spline interpolation method to Gamma Pro, Gamma 10, Cobra, and SR300 equipment. Results Two-way ANOVA was used for statistical analysis. The significance level was applied as P <0.05. The results of TSH, ferritin, C-peptide, and insulin tests were compared between the fully automated radio immunoassay analyzers. There was a significant difference between ferritin, C-peptide, and insulin serum levels(P<0.001). TSH didn't show any significant different between the devices(P=0.29). In the difference between linear and spline interpolation, there was no significant difference between insulin test(P=0.08), TSH test(P=0.81), and Ferritin test(P=0.06). However, C-peptide test showed a significant difference(P=0.03). Especially, the insulin test showed significant difference in lower ranges. As a result of comparing and analyzing the difference between the two interpolation methods, the devices in the low concentration group showed significant difference(P<0.001). Conclusion In case of new equipment in the laboratory it is necessary to recognize that there is a difference in the curve fitting method for each automated radio immunoassay analyzers in the low concentration area when the principle of inspection is IRMA method.

Surface Deformation by using 3D Target Curve for Virtual Spatial Design (가상 공간 디자인을 위한 3차원 목표곡선을 이용한 곡면 변형)

  • Kwon, Jung-Hoon;Lee, Jeong-In;Chai, Young-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.10
    • /
    • pp.868-876
    • /
    • 2006
  • 2D input data have to be converted into 3D data by means of some functions and menu system in 2D input modeling system. But data in 3D input system for virtual spatial design can be directly connected to the 3D modeling data. Nevertheless, efficient surface modeling and deformation algorithm for the 3D input modeling system are not proposed yet. In this paper, problems of conventional NURBS surface deformation methods which can occur when applied in the 3D input modeling system are introduced. And NURBS surface deformation by 3D target curves, in which the designer can easily approach, are suggested. Designer can efficiently implement the virtual spatial sketching and design by using the proposed deformation algorithm.

Development of a Ship Calculation Program Based On the Geometric Model (형상모델 기반 선박계산 전산프로그램 개발)

  • Sang-Su Park;Kyu-Yeul Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.2
    • /
    • pp.121-134
    • /
    • 1999
  • In this paper, a ship calculation program is developed, which prof[nuts hydrostatics and volume calculation intact and damage stability and hull variation. Hull form and compartment geometry are expressed with NURBS curve wire-frame model. Hydrostatics and volume calculation are performed directly with the intersection method between section geometry and 3D planar surface. Equilibrium ship position is calculated with hydrostatic equilibrium equation which is linearized by 1st order Taylor series expansion sequentially. The developed program shows more accurate results and easy uses than the latter.

  • PDF

An Interactive Design System for Construction of Superyacht Profiles based on Freeform Curve Functionality (자유곡선의 모델링기능을 활용한 대화식 수퍼요트 프로파일 설계시스템 개발)

  • Nam, Jong-Ho;Kim, Dong-Ham
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.78-84
    • /
    • 2008
  • As a preliminary step to build a complete superyacht hull design program, the development of superyacht profile design system is introduced. The two-dimensional hull profile is decomposed into four local zones depending upon the functionality and connecting continuity of the profile. Characteristics of each zone are investigated and used to generate the model describing the geometric shape of zone using freeform curves. A set of design parameters is derived from the established geometric model. Generation and modification of a model are is by manipulating the chosen parameters. Four zones designed are integrated to form a final profile. An interactive design system performing all the modeling and modification processes is implemented using the graphic user interface system based an Microsoft Foundation Class and OpenCASCADE, a open graphic library. The shapes of the profiles generated by the developed design system are verified with those of built superyachts. The developed design system will be used for the construction of three-dimensional superyacht hull modeling system.

A Basic Study on the Fairing Method of Ship Hull Surface (선형의 순정 기법에 관한 기초 연구)

  • D.J. Kim;T.K. Yoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.2
    • /
    • pp.15-21
    • /
    • 1994
  • In the previous researches on mesh curve fairing method, a set of discrete data points in a mesh can be selected as variables. End tangent vectors can not be variables. This restriction makes some problems in preparing the end tangent vectors at the bow or stern parts, because their slopes are not infinites or zeros. In this paper end tangent vectors are included as variables and the more smooth results are obtained. Also two methods of constructing ship hull surface from mesh curves are examined. It is shown that the skinning method is better than non-uniform B-spline fitting method in representing the area near boundary. The generation of a ship surface is given as an example.

  • PDF

Simultaneous 3D Machining with Real-Time NURBS Interpolation

  • Hong, Won-Pyo;Lee, Seok-Woo;Park, Hon-Zong;Yang, Min-Yang
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.336-342
    • /
    • 2003
  • Increasing demand on precision machining using computerized numerical control (CNC) machines have necessitated that the tool move not only with the smallest possible position error but also with smoothly varying feedrates in 3-dimensional (3D) space. This paper presents the simultaneous 3D machining process investigated using a retrofitted PC-NC milling machine. To achieve the simultaneous 3-axis motions, a new precision interpolation algorithm for 3D Non Uniform Rational B-Spline (NURBS) curve is proposed. With this accurate and efficient algorithm for the generation of complex 3D shapes, a real-time NURBS interpolator was developed using a PC and the simultaneous 3D machining was accomplished satisfactorily.