• 제목/요약/키워드: spinal dorsal horn neurons

검색결과 65건 처리시간 0.027초

하악신경 절삭이 삼차신경절 신경세포와 연수후각 소교세포 활성화에 미치는 영향 (EFFECTS OF MANDIBULAR NERVE TRANSECTION ON TRIGEMINAL GANGLION NEURONS AND THE ACTIVATION OF MICROGLIAL CELLS IN THE MEDULLARY DORSAL HORN)

  • 임요한;최목균
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제33권3호
    • /
    • pp.227-237
    • /
    • 2007
  • Microglial cell activation is known to contribute to neuropathic pain following spinal sensory nerve injuries. In this study, I investigated its mechanisms in the case of trigeminal sensory nerve injuries by which microglial cell and p38 mitogen-activated protein kinase (p38 MAPK) activation in the medullary dorsal horn (MDH) would contribute to the facial pain hypersensitivity following mandibular nerve transection (MNT). And also investigated the changes of trigeminal ganglion neurons and ERK, p38 MAPK manifestations. Activation of microglial cells was monitored at 1, 3, 7, 14, 28 and 60 day using immunohistochemical analyses. Microglial cell activation was primarily observed in the superficial laminae of the MDH. Microglial cell activation was initiated at postoperative 1 day, maximal at 3 day, maintained until 14 day and gradually reduced and returned to the basal level by 60 days after MNT. Pain hypersensitivity was also initiated and attenuated almost in parallel with microglial cell activation pattern. To investigate the contribution of the microglial cell activation to the pain hypersensitivity, minocycline, an inhibitor of microglial cell activation by means of p38 MAPK inhibition, was administered. Minocycline dose-dependently attenuated the development of the pain hypersensitivity in parallel with inhibition of microglial cell and p38 MAPK activation following MNT. Mandibular nerve transection induced the activation of ERK, but did not p38 MAPK in the trigeminal ganglion. These results suggest that microglial cell activation in the MDH and p38 MAPK activation in the hyperactive microglial cells play an important role in the development of facial neuropathic pain following MNT. The results also suggest that ERK activation in the trigeminal ganglion contributes microglial cell activation and facial neuropathic pain.

Magnesium Suppresses the Responses of Dorsal Horn Cell to Noxious Stimuli in the Rat

  • Shin, Hong-Kee;Kim, Jin-Hyuk;Kim, Kee-Soon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권3호
    • /
    • pp.237-244
    • /
    • 1999
  • Magnesium ion is known to selectively block the N-methyl-D-aspartate (NMDA)-induced responses and to have anticonvulsive action, neuroprotective effect and antinociceptive action in the behavioral test. In this study, we investigated the effect of $Mg^{2+}$ on the responses of dorsal horn neurons to cutaneous thermal stimulation and graded electrical stimulation of afferent nerves as well as to excitatory amino acids and also elucidated whether the actions of $Ca^{2+}$ and $Mg^{2+}$ are additive or antagonistic. $Mg^{2+}$ suppressed the thermal and C-fiber responses of wide dynamic range (WDR) cell without any effect on the A-fiber responses. When $Mg^{2+}$ was directly applied onto the spinal cord, its inhibitory effect was dependent on the concentration of $Mg^{2+}$ and duration of application. The NMDA- and kainate-induced responses of WDR cell were suppressed by $Mg^{2+}$, the NMDA-induced responses being inhibited more strongly. $Ca^{2+}$ also inhibited the NMDA-induced responses current-dependently. Both inhibitory actions of $Mg^{2+}$ and $Ca^{2+}$ were additive, while $Mg^{2+}$ suppressed the EGTA-induced augmentation of WDR cell responses to NMDA and C-fiber stimulation. Magnesium had dual effects on the spontaneous activities of WDR cell. These experimental findings suggest that $Mg^{2+}$ is implicated in the modulation of pain in the rat spinal cord by inhibiting the responses of WDR cell to noxious stimuli more strongly than innocuous stimuli.

  • PDF

Peripheral Nerve Injury Alters Excitatory and Inhibitory Synaptic Transmission in Rat Spinal Cord Substantia Gelatinosa

  • Youn, Dong-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권3호
    • /
    • pp.143-147
    • /
    • 2005
  • Following peripheral nerve injury, excessive nociceptive inputs result in diverse physiological alterations in the spinal cord substantia gelatinosa (SG), lamina II of the dorsal horn. Here, I report the alterations of excitatory or inhibitory transmission in the SG of a rat model for neuropathic pain ('spared nerve injury'). Results from whole-cell recordings of SG neurons show that the number of distinct primary afferent fibers, identified by graded intensity of stimulation, is increased at 2 weeks after spared nerve injury. In addition, short-term depression, recognized by paired-pulse ratio of excitatory postsynaptic currents, is significantly increased, indicating the increase of glutamate release probability at primary afferent terminals. The peripheral nerve injury also increases the amplitude, but not the frequency, of spontaneous inhibitory postsynaptic currents. These data support the hypothesis that peripheral nerve injury modifies spinal pain conduction and modulation systems to develop neuropathic pain.

흰쥐 족저에 Formalin 주입으로 유발된 통증반응에 대한 전침 효과 (Effects of Electroacupuncture on the Modulation of Formalin-induced Pain in the Rat)

  • 김재효;최동옥;김민선;박병림;손인철
    • 대한한의학회지
    • /
    • 제23권2호
    • /
    • pp.97-107
    • /
    • 2002
  • Objective : Acupuncture is a method used to treat many kinds of pain in oriental cultural medicine. Especially when hetero-segmental area acu-points are stimulated, the therapeutic effects of pain control have more critical properties than other methods of acupuncture. However, the mechanism of pain control by acupuncture is contradictory so far. The present study examined the effects of electroacupuncture (EA) applied to the acu-point of the hetero-segmental area on modulation of formalin-induced pain in Sprague-Dawley rats. Methods : In order to apply EA to acu-points in the plantar area of right forepaws, a pair of Teflon-coated stainless steel wires were implanted in HT 7 (Shin-Moon) and PC 7 (Dae-Reung) 7 days before the behavioral test. A behavioral test was performed by means of video camera after injection of 5% formalin ($50{\;}\mu\textrm{l}$) into the lateral plantar region of the left hind paw. EA was delivered by a constant DC current stimulator at 4~5 mA, 2 ms, and 10 Hz for 30 min. c-Fos protein expression was measured in the lumbar spinal cord at 2 hr and 4 hr after formalin injection. Results : Behavioral responses including favoring, flinching and biting occurred in the biphasic pattern, such as the 1st phase (0~5 min) and the 2nd phase (20~45 min) after formalin injection. However, EA (4~5 mA, 2 ms, 10 Hz) significantly inhibited the behavioral responses. Injection of formalin expressed c-Fos protein on the ipsilateral dorsal horn neurons in L3 - L5 and the expression was sustained more than 4 hrs after formalin injection. However, EA decreased c-Fos protein expression at dorsal horn neurons in the lumbar spinal cord till 4hrs after formalin injection. Conclusions : These results suggest that EA modulates formalin-induced pain and this inhibitory action may be elicited by the descending inhibitory system.

  • PDF

고빈도 120 Hz 전침이 Carrageenan으로 유발된 흰쥐의 Prostaglandin E2와 척수 N-Methyl-D-Aspartate Receptor 발현에 미치는 영향 (The Effects of 120Hz Electroacupuncture on the Prostaglandin E2 and Spinal N-Methyl-D-Aspartate Receptor Expression in the Carrageenan-Injected Rat)

  • 손인석;최병태;장경전
    • Journal of Acupuncture Research
    • /
    • 제20권3호
    • /
    • pp.15-23
    • /
    • 2003
  • Objective : The role of high frequency 120 Hz electroacupuncture(EA) in carrageenan-induced pain was studied by examining the alnalgesic effects, and prostaglandin $E_2(PGE_2)$ levels measurement and spinal N-methyl-D-aspartate(NMDA) receptor expression. Inflammation was induced by an intraplantar injection of 1% carrageenan into the right hind paw. Method : Bilateral EA stimulation with 120 Hz were delivered at those acupoints corresponding to Zusanli and Sanyinjiao in man via the needles for a total of 30 min duration in carrageenan-injected rats. Results : EA stimulation showed significant analgesic effects as measured by analgesy-meter at all time points tested compared with controls. Three hours after carrageenan injection, PGE2 levels were measured by commercial kit. EA significantly inhibited PGE2 production in the right paw. The number of NR1 and NR2A, NMDA receptor, immunoreactive neurons was significantly increased in the superficial dorsal horn(laminae I-II) and nucleus proprius(laminae III-IV) of ipsilateral spinal cord at L4-5. But the number of carrageenan-induced NR1 and NR2A immunoreactive neuron, especially NR1 immunoreaction in the superficial dorsal horn, was reduced by 120 Hz EA stimulation. Conclusions : These results indicate that NMDA receptors may mediate transmission of nociceptive information originating in tissue inflammation of hind paw and high frequency 120 Hz EA stimulation have an alleviating action against local inflammatory pain.

  • PDF

Action of Mitochondrial Substrates on Neuronal Excitability in Rat Substantia Gelatinosa Neurons

  • Lee, Hae In;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • 제42권2호
    • /
    • pp.55-61
    • /
    • 2017
  • Recent studies indicate that mitochondria are an important source of reactive oxygen species (ROS) in the spinal dorsal horn. In our previous study, application of malate, a mitochondrial electron transport complex I substrate, induced a membrane depolarization, which was inhibited by pretreatment with ROS scavengers. In the present study, we used patch clamp recording in the substantia geletinosa (SG) neurons of spinal slices, to investigate the cellular mechanism of mitochondrial ROS on neuronal excitability. DNQX (an AMPA receptor antagonist) and AP5 (an NMDA receptor antagonist) decreased the malate-induced depolarization. In an external calcium free solution and addition of tetrodotoxin (TTX) for blockade of synaptic transmission, the malate-induced depolarization remained unchanged. In the presence of DNQX, AP5 and AP3 (a group I metabotropic glutamate receptor (mGluR) antagonist), glutamate depolarized the membrane potential, which was suppressed by PBN. However, oligomycin (a mitochondrial ATP synthase inhibitor) or PPADS (a P2 receptor inhibitor) did not affect the substrates-induced depolarization. These results suggest that mitochondrial substrate-induced ROS in SG neuron directly acts on the postsynaptic neuron, therefore increasing the ion influx via glutamate receptors.

실험적 관절염 흰쥐 모델에서 고삼추출액이 척수와 척수신경절의 CGRP 면역반응 신경원에 미치는 영향 (The Effects of Sophorae radix Extracts on CGRP Immunoreactive Neurons of Spinal Cord and Ganglia in Experimental Arthritic Rat Model)

  • 신현종;이광규;육상원;이상룡;고병문;이창현
    • 동의생리병리학회지
    • /
    • 제16권1호
    • /
    • pp.117-123
    • /
    • 2002
  • To investigate the antiinflammatory and analgesic effects of Sophorae radix extracts administered to the arthritic rat model, immunohistochemical stains for CGRP in the L4, L5 and L6 spinal cord and ganglia were done, and paw swelling thickness were measured. Complete Freund,s Adjuvant(CFA) were injected to subcutaneous tissue of left foot paw of rats to induce arthritis. Sophorae radix extracts was administered immediately after CFA injection for 10 days. The spinal cord and ganglia were frozen sectioned(30㎛). These sections were stained by CGRP immunohistochemical staining method, and observed with light microscope. The results were as follows : 1. The change of paw swelling thickness of experimental group decreased from 4 day to 10day after CFA injection compared to control group. 2. The change of differential leukocytes counts of experimental group increased the ratio of lymphocytes. and decreased the ratio of neutrophils compared to control group. 3. The change of CGRP immunoreactive nerve fiber of dorsal horn of experimental group was dense stained compared to control group. 4. The number of CGRP immunoreactive neurons of L4 and L5 spinal cord of experimental group was less than in those control group. These results suggested that Sophorae radix extracts reduces the number of CGRP immunoreactive neurons and nerve fibers of spinal cord and ganglia, and decrease paw swelling thickness in arthritic rat model, which may be closely related to analgesic and antiinflammatory effects of Sophorae radix.

초음파가 흰쥐의 좌골신경 압좌손상 후 척수내 Neural Cell Adhesion Molecules의 발현에 미치는 영향 (The Effect of Ultrasound Irradiation on the Neural Cell Adhesion Molecules(NCAM) Expression in Rat Spinal Cord after the Sciatic Nerve Crush Injury)

  • 김현애;한종만
    • The Journal of Korean Physical Therapy
    • /
    • 제19권2호
    • /
    • pp.41-55
    • /
    • 2007
  • Purpose: This study aimed to compare the effect on nerve regeneration of ultrasound irradiation in rats with peripheral nerve injury. Methods: To investigate alterations of the NCAM immunoreactivity in non-crushed part and crushed part of the spinal cord, the unilateral sciatic nerve of the rats were crushed. The expression of NCAM was used as the marked of peripheral nerve regeneration, and also plays an important role in developing nerve system. Experimental animals were sacrificed by perfusion fixation at post-injury 1, 3, 7, 14 days after ultrasound irradiation. The pulsed US was applied at a frequency of 1MHz and a spatial average-temporal average Intensity of 0.5W/of (20% pulse ratio) for 1 mins. The Luxol fast blue-cresyl violet stain were also done to observe the morphological changes. Results: Alteration of NCAM immunoreactivity in the crushed part and the non-crushed part of lower lumbar spinal cord were observed. NCAM-immunoreactivity cells were some increased in the dorsal horn lamina I, III and cell ventral horn at 1 day after unilateral sciatic nerve injury. However, there was not significant difference in the relationship between crushed part and non-crushed part. NCAM-inmmunoreactivity was remarkably increased at 3 days after unilateral sciatic nerve injuryin the gray matter and white matter. NCAM-immunoreactivity was increased in the ventral horn and post horn of experimental crushed part. Also, NCAM-immunoreactivity in large motor neurons in ventral horns lamina VIII, IX were increased at 7 days after unilateral sciatic nerve injury. At 14 days after sciatic nerve crushed injury, there was no significant difference. All group were decreased for 14 days. In the time course of NCAM expression, all groups showed a significant difference at 3day groups(p<0.05). Whereas, CC group was noted a significant difference between 3day and 7 day group respectively. In NCAM expression, there were significantly increased in all group. In the relationship between CNC group and ENC group, significant difference was detected among 3, 7, 14 day group(p<0.05). The difference between CC group and ENC group were noted in all groups(p<0.05). Conclusion: It is consequently suggested that the effects of the ultrasound irradiation may increase the NCAM immunoreactive neurons and glial cell in the spinal cord after unilateral sciatic nerve crushed injury. Therefore, the increased NCAM immunoreactivity in the spinal cord may reflect the neuronal damage and healing process induced by a ultrasound irradiation after peripheral nerve injury in rat.

  • PDF

Effects of Reactive Oxygen Species and Nitrogen Species on the Excitability of Spinal Substantia Gelatinosa Neurons

  • Park, Joo Young;Park, Areum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • 제41권3호
    • /
    • pp.141-147
    • /
    • 2016
  • Reactive oxygen species (ROS) and nitrogen species (RNS) are both important signaling molecules involved in pain transmission in the dorsal horn of the spinal cord. Xanthine oxidase (XO) is a well-known enzyme for the generation of superoxide anions ($O_2^{\bullet-}$), while S-nitroso-N-acetyl-DL-penicillamine (SNAP) is a representative nitric oxide (NO) donor. In this study, we used patch clamp recording in spinal slices of rats to investigate the effects of $O_2^{\bullet-}$ and NO on the excitability of substantia gelatinosa (SG) neurons. We also used confocal scanning laser microscopy to measure XO- and SNAP-induced ROS and RNS production in live slices. We observed that the ROS level increased during the perfusion of xanthine and xanthine oxidase (X/XO) compound and SNAP after the loading of 2',7'-dichlorofluorescin diacetate ($H_2DCF-DA$), which is an indicator of intracellular ROS and RNS. Application of ROS donors such as X/XO, ${\beta}-nicotinamide$ adenine dinucleotide phosphate (NADPH), and 3-morpholinosydnomimine (SIN-1) induced a membrane depolarization and inward currents. SNAP, an RNS donor, also induced membrane depolarization and inward currents. X/XO-induced inward currents were significantly decreased by pretreatment with phenyl N-tert-butylnitrone (PBN; nonspecific ROS and RNS scavenger) and manganese(III) tetrakis(4-benzoic acid) porphyrin (MnTBAP; superoxide dismutase mimetics). Nitro-L-arginine methyl ester (NAME; NO scavenger) also slightly decreased X/XO-induced inward currents, suggesting that X/XO-induced responses can be involved in the generation of peroxynitrite ($ONOO^-$). Our data suggest that elevated ROS, especially $O_2^{\bullet-}$, NO and $ONOO^-$, in the spinal cord can increase the excitability of the SG neurons related to pain transmission.

Pre- and Postsynaptic Actions of Reactive Oxygen Species and Nitrogen Species in Spinal Substantia Gelatinosa Neurons

  • Park, Areum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • 제43권4호
    • /
    • pp.209-216
    • /
    • 2018
  • Reactive oxygen species (ROS) and nitrogen species (RNS) are involved in cellular signaling processes as a cause of oxidative stress. According to recent studies, ROS and RNS are important signaling molecules involved in pain transmission through spinal mechanisms. In this study, a patch clamp recording was used in spinal slices of rats to investigate the action mechanisms of $O_2{^{{\bullet}_-}}$ and NO on the excitability of substantia gelatinosa (SG) neuron. The application of xanthine and xanthine oxidase (X/XO) compound, a ROS donor, induced inward currents and increased the frequency of spontaneous excitatory postsynaptic currents (sEPSC) in slice preparation. The application of S-nitroso-N-acetyl-DL-penicillamine (SNAP), a RNS donor, also induced inward currents and increased the frequency of sEPSC. In a single cell preparation, X/XO and SNAP had no effect on the inward currents, revealing the involvement of presynaptic action. X/XO and SNAP induced a membrane depolarization in current clamp conditions which was significantly decreased by the addition of thapsigargin to an external calcium free solution for blocking synaptic transmission. Furthermore, X/XO and SNAP increased the frequency of action potentials evoked by depolarizing current pulses, suggesting the involvement of postsynaptic action. According to these results, it was estblished that elevated ROS and RNS in the spinal cord can sensitize the dorsal horn neurons via pre- and postsynaptic mechanisms. Therefore, ROS and RNS play similar roles in the regulation of the membrane excitability of SG neurons.