DOI QR코드

DOI QR Code

Action of Mitochondrial Substrates on Neuronal Excitability in Rat Substantia Gelatinosa Neurons

  • Lee, Hae In (Department of Dental Hygiene, Gwangyang Health Science University) ;
  • Chun, Sang Woo (Department of Oral Physiology, College of Dentistry, Wonkwang University)
  • Received : 2017.05.08
  • Accepted : 2017.05.23
  • Published : 2017.06.30

Abstract

Recent studies indicate that mitochondria are an important source of reactive oxygen species (ROS) in the spinal dorsal horn. In our previous study, application of malate, a mitochondrial electron transport complex I substrate, induced a membrane depolarization, which was inhibited by pretreatment with ROS scavengers. In the present study, we used patch clamp recording in the substantia geletinosa (SG) neurons of spinal slices, to investigate the cellular mechanism of mitochondrial ROS on neuronal excitability. DNQX (an AMPA receptor antagonist) and AP5 (an NMDA receptor antagonist) decreased the malate-induced depolarization. In an external calcium free solution and addition of tetrodotoxin (TTX) for blockade of synaptic transmission, the malate-induced depolarization remained unchanged. In the presence of DNQX, AP5 and AP3 (a group I metabotropic glutamate receptor (mGluR) antagonist), glutamate depolarized the membrane potential, which was suppressed by PBN. However, oligomycin (a mitochondrial ATP synthase inhibitor) or PPADS (a P2 receptor inhibitor) did not affect the substrates-induced depolarization. These results suggest that mitochondrial substrate-induced ROS in SG neuron directly acts on the postsynaptic neuron, therefore increasing the ion influx via glutamate receptors.

Keywords

References

  1. Kumazawa T, Perl ER. Excitation of marginal and substantia gelatinosa neurons in the primate spinal cord: indications of their place in dorsal horn functional organization. J Comp Neurol. 1978;177(3):417-434. doi: 10.1002/cne.901770305.
  2. Yoshimura M, Jessell TM. Membrane properties of rat substantia gelatinosa neurons in vitro. J Neurophysiol. 1989;62(1):109-118. https://doi.org/10.1152/jn.1989.62.1.109
  3. Levy D, Zochodne DW. Local nitric oxide synthase activity in a model of neuropathic pain. Eur J Neurosci. 1998;10(5): 1846-1855. doi: 10.1046/j.1460-9568.1998.00186.x.
  4. Liu D, Liu J, Sun D, Wen J. The time course of hydroxyl radical formation following spinal cord injury: the possible role of the iron-catalyzed Haber-Weiss reaction. neuropathic pain. 1998;10(5):1846-1855. doi: 10.1089/0897715041269650.
  5. Khalil Z, Khodr B. A role for free radicals and nitric oxide in delayed recovery in aged rats with chronic constriction nerve injury. Free Radic Biol Med. 2001;31(4):430-439. doi: http://dx.doi.org/10.1016/S0891-5849(01)00597-4.
  6. Wang ZQ, Porreca F, Cuzzocrea S, Galen K, Lightfoot R, Masini E, Muscoli C, Mollace V, Ndengele M, Ischiropoulos H, Salvemini D. A newly identified role for superoxide in inflammatory pain. J Pharmacol Exp Ther. 2004;309(3): 869-878. doi: 10.1124/jpet.103.064154.
  7. Djordjevic VB. Free radicals in cell biology. Int Rev Cytol. 2004;237:57-89. doi: 10.1016/S0074-7696(04)37002-6.
  8. Park ES, Gao X, Chung JM, Chung K. Levels of mitochondrial reactive oxygen species increase in rat neuropathic spinal dorsal horn neurons. Neurosci Lett. 2006;391:108-111. doi: 10.1016/j.neulet.2005.08.055.
  9. Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979;59(3):527-605. https://doi.org/10.1152/physrev.1979.59.3.527
  10. Kwong LK, Sohal RS. Substrate and site specificity of hydrogen peroxide generation in mouse mitochondria. Arch Biochem Biophys. 1998;350(1):118-126. doi: 10.1006/abbi.1997.0489
  11. Lee HI, Park AR, Chun SW. Effects of Mitochondrial Reactive Oxygen Species on Neuronal Excitability in Rat Spinal Substantia Gelatinosa Neurons. Int J Oral Biol. 2012;37(1):17-23.
  12. Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ. Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem. 2003;278(38):36027-36031. doi: 10.1074/jbc.M304854200.
  13. Liot G, Bossy B, Lubitz S, Kushnareva Y, Sejbuk N, Bossy-Wetzel E. Complex II inhibition by 3-NP causes mitochondrial fragmentation and neuronal cell death via an NMDA- and ROS-dependent pathway. Cell Death Differ. 2009;16(6):899-909. doi: 10.1038/cdd.2009.22.
  14. Otis TS, Kavanaugh MP, Jahr CE. Postsynaptic glutamate transport at the climbing fiber-Purkinje cell synapse. Science. 1997;277(5331):1515-1518. doi: 10.1126/science.277.5331.1515.
  15. Dehnes Y, Chaudhry FA, Ullensvang K, Lehre KP, Storm-Mathisen J, Danbolt NC. The glutamate transporter EAAT4 in rat cerebellar Purkinje cells: a glutamate-gated chloride channel concentrated near the synapse in parts of the dendritic membrane facing astroglia. J Neurosci. 1998;15;18(10):3606-3619. https://doi.org/10.1523/JNEUROSCI.18-10-03606.1998
  16. Brasnjo G, Otis TS. Isolation of glutamate transport-coupled charge flux and estimation of glutamate uptake at the climbing fiber-Purkinje cell synapse. Proc Natl Acad Sci U S A. 2004;101(16):6273-6278. doi: 10.1073/pnas.0308149101.
  17. Yudkoff M, Nelson D, Daikhin Y, Erecinska M. Tricarboxylic acid cycle in rat brain synaptosomes. Fluxes and interactions with aspartate aminotransferase and malate/aspartate shuttle. J Biol Chem. 1994;269(44):27414-27420.
  18. Panov A, Schonfeld P, Dikalov S, Hemendinger R, Bonkovsky HL, Brooks BR. The neuromediator glutamate, through specific substrate interactions, enhances mitochondrial ATP production and reactive oxygen species generation in nonsynaptic brain mitochondria. J Biol Chem. 2009;284(21): 14448-14456. doi: 10.1074/jbc.M900985200.
  19. Navarro A, Boveris A. Rat brain and liver mitochondria develop oxidative stress and lose enzymatic activities on aging. Am J Physiol Regul Integr Comp Physiol. 2004; 287(5):R1244-1249. doi: 10.1152/ajpregu.00226.2004.
  20. Cai J, Jones DP. J. Superoxide in apoptosis. Mitochondrial generation triggered by cytochrome c loss. Biol Chem. 1998;8;273(19):11401-11404. https://doi.org/10.1074/jbc.273.19.11401
  21. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82(1):47-95. doi: 10.1152/physrev.00018.2001.
  22. Gonzalez C, Sanz-Alfayate G, Agapito MT, Gomez-Nino A, Rocher A, Obeso A. Significance of ROS in oxygen sensing in cell systems with sensitivity to physiological hypoxia. Respir Physiol Neurobiol. 2002; 22;132(1):17-41. https://doi.org/10.1016/S1569-9048(02)00047-2
  23. Baran CP, Zeigler MM, Tridandapani S, Marsh CB. The role of ROS and RNS in regulating life and death of blood monocytes. Curr Pharm Des. 2004;10(8):855-866. https://doi.org/10.2174/1381612043452866
  24. Bubici C, Papa S, Pham CG, Zazzeroni F, Franzoso G. The NF-kappaB-mediated control of ROS and JNK signaling. Histol Histopathol. 2006;21(1):69-80. doi: 10.14670/HH-21.69.
  25. Yowtak J, Lee KY, Kim HY, Wang J, Kim HK, Chung K, Chung JM. Reactive oxygen species contribute to neuropathic pain by reducing spinal GABA release. Pain. 2011;152(4):844-52. doi: 10.1016/j.pain.2010.12.034.
  26. Kim HK, Park SK, Zhou JL, Taglialatela G, Chung K, Coggeshall RE, Chung JM. Reactive oxygen species (ROS) play an important role in a rat model of neuropathic pain. Pain. 2004;111(1-2):116-124. doi: 10.1016/j.pain.2004.06.008.
  27. Kim HK, Kim JH, Gao X, Zhou JL, Lee I, Chung K, Chung JM. Analgesic effect of vitamin E is mediated by reducing central sensitization in neuropathic pain. Pain. 2006; 122(1-2):53-62. doi: 10.1016/j.pain.2006.01.013.
  28. Lesnefsky EJ, Moghaddas S, Tandler B, Kerner J, Hoppel CL. Mitochondrial dysfunction in cardiac disease: ischemia--reperfusion, aging, and heart failure. J Mol Cell Cardiol. 2001;33(6):1065-1089. doi: 10.1006/jmcc.2001.1378.
  29. Stowe DF, Camara AK. Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid Redox Signal. 2009;11(6):1373-1414. doi: 10.1089/ARS.2008.2331.
  30. Avshalumov MV, Rice ME. NMDA receptor activation mediates hydrogen peroxide-induced pathophysiology in rat hippocampal slices. J Neurophysiol. 2002;87(6):2896-2903. https://doi.org/10.1152/jn.2002.87.6.2896
  31. Smythies J. The neurotoxicity of glutamate, dopamine, iron and reactive oxygen species: functional interrelationships in health and disease: a review-discussion. Neurotox Res. 1999;1(1):27-39. https://doi.org/10.1007/BF03033337
  32. Sung B, Lim G, Mao J. Altered expression and uptake activity of spinal glutamate transporters after nerve injury contribute to the pathogenesis of neuropathic pain in rats. J Neurosci. 2003;1;23(7):2899-910. https://doi.org/10.1523/JNEUROSCI.23-07-02899.2003
  33. Mason HS, Bourke S, Kemp PJ. Selective modulation of ligand-gated P2X purinoceptor channels by acute hypoxia is mediated by reactive oxygen species. Mol Pharmacol. 2004;66(6):1525-1535. doi: 10.1124/mol.104.000851.