• Title/Summary/Keyword: spin-on dielectric

Search Result 157, Processing Time 0.026 seconds

Properties of Polymethyl methacrylate (PMMA) for Polymer Gate Dielectric Thin Films Prepared by Spin Coating (Spin coating 공정을 이용한 Polymethyl methacrylate (PMMA) 박막의 polymer gate dielectric layer로써의 특성평가)

  • Na, Moon-Kyong;Kang, Dong-Pil;Ahn, Myeog-Sang;Myoung, In-Hye;Kang, Young-Taec
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.29-32
    • /
    • 2005
  • Poly (methyl methacrylate) (PMMA) is one of the promising representive of polymer gate dielectric for its high resistivity and sutible dielectric constant. PMMA (Mw=96700) films were prepared on p-Si by spin coating method. PMMA were coated compactively and flatly as observeed by AFM. MIS(Al/PMMA/p-Si) structure was made and capacitance-voltage (C-V) and current-voltage (I-V) measurements were done with PMMA films for different thermal treatment temperature. PMMA films were showed proper dielectric constant and breakdown voltage. Above the glass transition temperature PMMA films degraded. C-V measured at various frequencies, dielectric constant increased a little. The absence of hysteresis in the C-V characteristics, which eliminate the possibility of mobile charges in the PMMA films. The observed thermal stability, smooth surfaces, dielectric constant, I-V behavior implies PMMA formed by spin coating can be used as an efficient gate dielectric layer in OTFTs.

  • PDF

Effects of Precursor on the Electrical Properties of Spin-on Dielectric Films (Spin-on Dielectric 막의 전기적 특성에 미치는 전구체의 영향)

  • Lee, Wan-Gyu
    • Korean Journal of Materials Research
    • /
    • v.21 no.4
    • /
    • pp.236-241
    • /
    • 2011
  • Polysilazane and silazane-based precursor films were deposited on stacked TiN/Ti/TEOS/Si-substrate by spin-coating, then annealed at $150{\sim}400^{\circ}C$, integrated further to form the top electrode and pad, and finally characterized. The precursor solutions were composed of 20% perhydro-polysilazane ($SiH_2NH$)n, and 20% hydropolymethyl silazane ($SiHCH_3NH$)n in dibutyl ether. Annealing of the precursor films led to the compositional change of the two chemicals into silicon (di)oxides, which was confirmed by Fourier transform infrared spectroscopy (FTIR) spectra. It is thought that the different results that were obtained originated from the fact that the two precursors, despite having the same synthetic route and annealing conditions, had different chemical properties. Electrical measurement indicated that under 0.6MV/cm, a larger capacitance of $2.776{\times}10^{-11}$ F and a lower leakage current of 0.4 pA were obtained from the polysilazane-based dielectric films, as compared to $9.457{\times}10^{-12}$ F and 2.4 pA from the silazane-based film, thus producing a higher dielectric constant of 5.48 compared to 3.96. FTIR indicated that these superior electrical properties are directly correlated to the amount of Si-O bonds and the improved chemical bonding structures of the spin-on dielectric films, which were derived from a precursor without C. The chemical properties of the precursor films affected both the formation and the electrical properties of the spin-on dielectric film.

The Effects of Precursor on the Formation and Their Properties of Spin-on Dielectric Films Used for Sub-50 nm Technology and Beyond (50 nm 이상의 CMOS 기술에 이용되는 Spin-on Dielectric 박막 형성과 그 특성에 미치는 전구체의 영향)

  • Lee, Wan-Gyu
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.3
    • /
    • pp.182-188
    • /
    • 2011
  • Polysilazane and polymethylsilazane based precursor films were deposited on Si-substrate by spin-coating, subsequently annealed at $150{\sim}850^{\circ}C$, and characterized. Structural analysis, shrink, compositional change, etch rate, and gap-filling were observed. Annealing the precursor films led to formation of spin-on dielectric films. C-containing precursor films showed that less loss of N, H, and C while less gain of O than that of C-free precursor films at $400^{\circ}C$, but more loss of N, H, and C while more gain of O at $850^{\circ}C$. Thus polysilazane based precursor films exhibited less reduction in thickness of 14.5% than silazane based one of 15.6% at $400^{\circ}C$ but more 37.4% than 19.4% at $850^{\circ}C$. FTIR indicated that C induced smaller amount of Si-O bond, non-uniform property, and lower resistance to chemical etching.

STRUCTURAL MORPHOLOGY AND DIELECTRIC PROPERTIES OF POLYANILINE-EMERALDINE BASE AND POLY METHYL METHACRYLATE THIN FILMS PREPARED BY SPIN COATING METHOD

  • Shekar, B. Chandar;Yeon, Ji;Rhee, Shi-Woo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.1081-1084
    • /
    • 2003
  • Structural morphology, annealing behavior and dielectric properties of polyaniline-emeraldine base (Pani-EB) and poly methyl methacrylate (PMMA) thin films prepared by spin coating technique have been studied. MIM and MISM structures were used to investigate annealing and dielectric behavior. The XRD and AFM spectrum of as grown and annealed thin films indicates the amorphous nature. The observed amorphous phase, low loss, dielectric behavior and thermal stability even at high temperatures implies the feasibility of utilizing PMMA and Pani-EB thin films as gate dielectric insulator layer in organic thin film transistors which can find application in flat panel display.

  • PDF

A study on the spin on glass (SOG) from polysilazane resin for the premetal dielectric (PMD) layer of sub-quarter micron devices (초고집적소자의 층간절연막용 polysilazane계 spin on glass (SOG)에 관한 연구)

  • 나사균;정석철;이재관;김진우;홍정의;이원준
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.1
    • /
    • pp.69-75
    • /
    • 2000
  • We have investigated the feasibility of spin on glass (SOG) film from polysilazane-type resin as a premetal dielectric (PMD) layer of the next-generation ultra-large scale integrated (ULSI) devices. A commercial polysilazane resin and a polysilazane-type resin with oxidizing agent were spin-coated and cured to form SOG films. In order to study the effect of oxidizing agent and annealing, the SOG films were characterized as cured and after annealing at $400^{\circ}C$ to $900^{\circ}C$. the density and the resistance against wet chemical of the SOG films were improved by the addition of oxidizing agent, because oxidizing agent enhanced the conversion from polysilazane polymer to $SiO_2$. The hole profile issue associated with insufficient curing of polysilazane in narrow gaps was also resolved by oxidizing agent, while the gapfill capability of SOG was not deteriorated by oxidizing agent.

  • PDF

Study on Formation of Semitransparent Cu Nanoparticle Layers for Realizing Metal Nanoparticle-Dielectric Bilayer Structures (금속나노입자-유전체 이층 구조 구현을 위한 반투명 Cu 나노입자층 형성에 관한 연구)

  • Yoon, Hye Ryeon;Jo, Yoon Ee;Yoon, Hoi Jin;Lee, Seung-Yun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.6
    • /
    • pp.460-464
    • /
    • 2020
  • This study reports the fabrication and application of semitransparent Cu nanoparticle layers. Spin coating and subsequent drying of a Cu colloid solution were performed to deposit Cu nanoparticle layers onto Si and glass substrates. As the spin speed of the spin coating increases, the density of the nanoparticles on the substrate decreases, and the agglomeration of nanoparticles is suppressed. This microstructural variation affects the optical properties of the nanoparticle layers. The transmittance and reflectance of the Cu nanoparticle layers increase with increasing spin speed, which results from the trade-off between the exposed substrate area and surface coverage of the Cu nanoparticles. Since the glass substrates coated with Cu nanoparticle layers are semitransparent and colored, it is anticipated that the application of a Cu nanoparticle-dielectric bilayer structure to transparent solar cells will improve the cell efficiency as well as aesthetic appearance.

Electric properties of Polymethyl methacrylate(PMMA) Films to thermal treatment Prepared by Spin Coating (회전 도포 공정을 이용한 Polymethyl methacrylate(PMMA) 박막의 열처리에 따른 전기적 특성 평가)

  • Na, Moon-Kyong;Kang, Dong-Pil;Ahn, Myeog-Sang;Myung, In-Hye;Kang, Young-Taec
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1924-1926
    • /
    • 2005
  • Poly(methyl methacrylate) (PMMA) is one of the promising representive of polymer gate dielectric for its high resistivity and sutible dielectric constant. PMMA (Mw=96700) films were prepared on p-Si by spin coating method. PMMA were coated compactively and flatly as observes by AFM. MIS(Al/PMMA/p-Si) structure was made and capacitance-voltage (C-V) and current-voltage (I-V) measurements were done with PMMA films for repeated annealing cycles at $100^{\circ}C$. 1-V measured at various delay times $(0{\sim}20sec)$ showed little change and the absence of hysteresis in the I-V characteristics with delay times, which eliminate the possibility of deep traps in the PMMA films. The observed thermal stability, smooth surfaces, dielectric constant, I-V behavior implies PMMA formed by spin coating can be used as an efficient gate dielectric layer in OTFTs.

  • PDF

Properties of Spin-On-Glass Siloxane Thin Films Fluorine-doped by CF$_4$ Plasma (CF$_4$ 플라즈마 처리로 불소를 첨가한 실록산 Spin-On-Glass 박막의 특성)

  • 김현중;김기호
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.3
    • /
    • pp.258-263
    • /
    • 2001
  • Siloxane thin films were fabricated on a silicon wafer by spin-coating using a siloxane solution made by the sol-gel process. Fluorine was doped using$ CF_4$ plasma treatment. The film was then annealed in-situ state in the nitrogen atmosphere. In order to examine the influence of annealing and fluorine doping on the siloxane thin film, thermogravimetric-differential thermal analysis (TG-DTA), Fourier transform-infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) were used and the dielectric constant was determined by the high-frequency capacitance-voltage method. Stable siloxane films could be obtained by in-situ annealing in a nitrogen atmosphere after $CF_4$ plasma treatment, and the dielectric value of the film was $\varepsilon$ 2.5.

  • PDF

Electrical/Microstructural Characterization of Dielectric Thin Films Prepared on Transparent Substrates

  • You, Iyl-Hwan;Hwang, Jin-Ha
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.1
    • /
    • pp.53-57
    • /
    • 2008
  • $Pb(ZrTi)O_3$ thin films were prepared on transparent conducting oxides, through sol-gel processing. The processing variables such as spin velocity, spin time and annealing temperature were investigated using a statistical design of experiments. Dielectric properties were determined through capacitance-voltage measurements and electrical characterizations evaluated using current-voltage characteristics. The leakage currents is determined mainly by annealing. The capacitance and breakdown voltage is found to be independent of the processing variables. The sophisticatedly controlled PZT thin films have been confirmed through microscopic images.

  • PDF

Ultralow Dielectric Properties of $SiO_2$ Aerogel Thin Films (실리카 에어로겔 박막의 극저 유전특성)

  • 현상훈;김중정;김동준;조문호;박형호
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.3
    • /
    • pp.314-322
    • /
    • 1997
  • The thin film processing and the applicability as a IMD material of SiO2 aerogels providing ultralow dielec-tric properties were studied. The SiO2 aerogel films with 0.5g/㎤ density (78% porosity) and 4000~21000$\AA$ thickness could be prepared at 25$0^{\circ}C$ and 1160 psig by supercritical drying of wet-gel films, which were spin-coated at the spin rate of 1000~7000 rpm on p-Si(111) wafer under the isopropanol atmosphere. The optimum viscosity of polymeric SiO2 sols for spin coating was in the range of 10~14 cP. The main fac-tors being able to control the film thickness and microstructures were found to be sol concentration, spin rpm, and aging time of wet-gel films. The dielectric constant of the SiO2 aerogel thin film was around 2.0 low enough to be applied to the next generation semiconductor device beyond the giga level.

  • PDF