• Title/Summary/Keyword: spin-lattice relaxation time

Search Result 39, Processing Time 0.03 seconds

Nuclear Magnetic Resonance Study of 23Na Nucleus in NaBrO3 Single Crystal

  • Yeom, Tae Ho
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.342-346
    • /
    • 2015
  • The nuclear magnetic resonance of the $^{23}Na$ nucleus in a $NaBrO_3$ single crystal was investigated at the temperature range of 200 K~410 K. The tendencies of temperature dependence of the nuclear quadrupole coupling for the two magnetically inequivalent Na(I) and Na(II) centers are found to be opposite to each other. The nuclear spin-lattice relaxation mechanism of $^{23}Na$ in the $NaBrO_3$ crystal is investigated, and the result revealed that the Raman process is dominant in the temperature range investigated. The relaxation process of the $^{23}Na$ nuclear spins was well described by a single exponential function in time. The $T_1$ values of the $^{23}Na$ nuclei in the $NaBrO_3$ single crystal decreased with increasing temperature. The calculated activation energy for the $^{23}Na$ is $0.032{\pm}0.002eV$.

Proton Magnetic Resonance Study of the Amino Group of Thioacetamide (TA) I. Quadrupole Relaxation Effects in NH$_2$ of Thioacetamide

  • Suhr, Jae-Ryun;Yoon, Chang-Ju;Ro, Seong-Gu;Choi, Young-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.4
    • /
    • pp.230-232
    • /
    • 1987
  • Nitrogen-14 quadrupolar relaxation has been observed in the amino proton nmr spectra of TA in acetone and methanol solutions over the temperature range $-83^{\circ}C\; to\;+35^{\circ}C.$ The proton nmr lineshapes were analyzed to yield a $^{14}N$ spin lattice relaxation time $(T_1)_N$ as a function of temperature. Activation energies and correlation times at $25^{\circ}C$ for the molecular reorientation in the two solution phases have been calculated and the results are discussed.

Design of a Non-Invasive Blood Glucose Sensor Using a Magneto-Resonance Absorption Method (자기공명흡수법에 의한 무혈혈당측정기의 디자인)

  • Kim Dong-Kyun;Won Jong-Hwa;Potapov Sergey N.;Protasov Evgeniy A.
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.2 s.302
    • /
    • pp.33-38
    • /
    • 2005
  • In this paper, the sensing unit of a non-invasive blood glucose sensor for home users, using a magneto-resonance absorption method, have been designed and manufactured. The sensor is capable of non-invasively determining blood glucose levels through measuring the 1H spin-lattice relaxation time in human body, The comparison of initial models, with different dimensions and shapes, for the sensing unit has led us to select the materials of the final model, which has adequate size and weight for home use. Through the design optimization using the FEM model, the dimension of final model has been determined to satisfy the required strength and uniformity of the magnetic field in the detecting area.

Investigation on structural symmetry of CsCoCl3·2H2O crystals by magic-angle spinning 1H and static 133Cs nuclear magnetic resonance

  • Park, Sang Hyeon;Jang, Du Chang;Jeon, Hara;Gyeong, Oh Yi;Lim, Ae Ran
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.26 no.1
    • /
    • pp.10-16
    • /
    • 2022
  • The phase transition temperatures of CsCoCl3·2H2O crystals are investigated via differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Three endothermic peaks at temperatures of 370 K (=TC1), 390 K (=TC2), and 416 K (=TC3) were observed for phase transitions from CsCoCl3·2H2O to CsCoCl3·1.5H2O, to CsCoCl3·H2O, and then to CsCoCl3·0.5H2O, respectively. In addition, the spin-lattice relaxation time T in the rotating frame and T1 in the laboratory frame as well as changes in chemical shifts for 1H and 133Cs near TC1 were found to be temperature dependent. Our analyses results indicated that the changes of chemical shifts, T, and T1 are associated with structural phase transitions near temperature TC1. The changes of chemical shifts, T, and T1 near TC1 were associated with structural phase transitions, owing to the changes in the symmetry of the structure formed of H2O and Cs+ ions. Consequently, the structural symmetry in CsCoCl3·2H2O crystals based on temperature is discussed by the environments of their H and Cs nuclei.

Phase Transitions in $KTiOPO_4$Studied by$^{31}$P Nuclear Magnetic Relaxation

  • Kim, K. S.;Lee, C. H.;Lee, Cheol-Eui;N. S. Dalal;R. Fu;S. Y. Jeong;Kim, J. N.;Kim, S. C.
    • Journal of Magnetics
    • /
    • v.5 no.3
    • /
    • pp.73-75
    • /
    • 2000
  • Undoped and Cr-doped samples of electrooptic material KTiOPO$_4$ were studied by $^{31}$P nuclear magnetic resonance (NMR). Spin-lattice relaxation time ($T_1$) measurements manifested phase transition behaviors that are attributed to changes in the dominant charge carriers in different temperature ranges.

  • PDF

Thermodynamic and Physical Properties of (NH4)2MnCl4·2H2O by Nuclear Magnetic Resonance Relaxation Times

  • Kim, Yoo Young
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.23 no.2
    • /
    • pp.40-45
    • /
    • 2019
  • The phase transition temperatures and thermodynamic properties of $(NH_4)_2MnCl_4{\cdot}2H_2O$ grown by the slow evaporation method were studied using differential scanning calorimetry and thermogravimetric analysis. A structural phase transition occurred at temperature $T_{C1}$ (=264 K), whereas the changes at $T_{C2}$ (=460 K) and $T_{C3}$ (=475 K) seemed to be chemical changes caused by thermal decomposition. In addition, the chemical shift and the spin-lattice relaxation time $T_{1{\rho}}$ were investigated using $^1H$ magic-angle spinning nuclear magnetic resonance (MAS NMR), in order to understand the role of $NH_4{^+}$ and $H_2O$. The rise in $T_{1{\rho}}$ with temperature was related to variations in the symmetry of the surrounding $H_2O$ and $NH_4{^+}$.

$^{13}C$ Nuclear Magnetic Resonance Study of Graphite Intercalated Superconductor $CaC_6$ Crystals in the Normal State ($CaC_6$ 결정에 대한 정상상태에서의 $^{13}C$ 핵자기공명 측정)

  • Kim, Sung-Hoon;Kang, Ki-Hyeok;Mean, B.J.;Ndiaye, B.;Lee, Moo-Hee;Kim, Jun-Sung
    • Progress in Superconductivity
    • /
    • v.12 no.1
    • /
    • pp.51-56
    • /
    • 2010
  • $^{13}C$ NMR (nuclear magnetic resonance) measurements have been performed to investigate the local electronic structure of a superconducting graphite intercalation compound $CaC_6$ ($T_c$ = 11.4 K). A large number of single crystals were stacked and sealed in a quartz tube for naturally abundant $^{13}C$ NMR. The spectrum, Knight shift, linewidth, and spin-lattice relaxation time $T_1$ were measured in the normal state as a function of temperature down to 80 K at 8.0 T perpendicular to the c-axis. The $^{13}C$ NMR spectrum shows a single narrow peak with a very small Knight shift. The Knight shift and the linewidth of the $^{13}C$ NMR are temperature-independent around, respectively, +0.012% and 1.2 kHz. The spin-lattice relaxation rate, $1/T_1$, is proportional to temperature confirming a Korringa behavior as for non-magnetic metals. The Korringa product is measured to be $T_1T\;=\;210\;s{\cdot}K$. From this value, the Korringa ratio is deduced to be $\xi$ = 0.73, close to unity, which suggests that the independent-electron description works well for $CaC_6$, without complications arising from correlation and many-body effects.

Nuclear Magnetic Relaxation in Anisotropic Heisenberg Antiferromagnet $MnCl_{2}.4H_{2}O$ (Heisenberg 반강자성체 $MnCl_{2}.4H_{2}O$의 핵자기완화 연구)

  • Chang Hoon Lee;Cheol Eui Lee
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.1
    • /
    • pp.54-57
    • /
    • 1995
  • We have studied the room temperature $^{1}H$ nuclear magnetic relaxation in anisotropic antiferromagnet $MnCl_{2}.4H_{2}O$ using a wide range of $^{1}H$ NMR (nuclear magnetic resonance) field. Being a system of dense paramagnetic $Mn^{++}$ ions at room temperature, $MnCl_{2}.4H_{2}O$ shows some features that can be expected from dilute paramagnetic systems, as well as some results that drastically deviate from the dilute paramagnetic approximations. Besides, $^{1}H$ nuclei exhibit an anomalous deviation in the spin-lattice relaxation time ($T_{1}$) around the field of 0.7 T.

  • PDF

Discriminating the Geographical Origin of Sesame Seeds by Low Field NMR (Low field NMR을 이용한 참깨의 원산지 판별)

  • Rho, Jeong-Hae;Lee, Sun-Min
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.1062-1066
    • /
    • 2002
  • Low field NMR was employed to discriminate the geographical origin of sesame seeds from Sudan, China, and Korea. Sudan sesame seeds had the lowest contents of moisture and crude fat. Chemical components of Korean and Chinese sesame seeds were similar, whereas relaxation times $(T_1-IR,\;T_1-SR)$ measeured through spin-lattice relaxation pluse techniques using 20 MHz NMR showed significant difference (p0.05). Canonical discriminant analysis could be used to identify the habitat of sesame seeds with over 90% accuracy of NMR results. Non-destructive and fast NMR techniques can be applied to classify Korean sesame seeds from those of other origins.

Study on nuclear magnetic resonance of superionic conductor NH4HSeO4 in rotating frame

  • Choi, Jae Hun;Lim, Ae Ran
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.18 no.1
    • /
    • pp.41-46
    • /
    • 2014
  • In order to obtain information on the structural geometry of $NH_4HSeO_4$ near the phase transition temperature, the spectrum and spin-lattice relaxation time in the rotating frame $T_{1{\rho}}$ for the ammonium and hydrogen-bond protons were investigated through $^1H$ MAS NMR. $T_{1{\rho}}$ for the hydrogen-bond protons abruptly decreased at high temperature and it is associated with the change in the structural geometry in $O-H{\cdots}O$ bonds. This mobility of the hydrogen-bond protons may be the main reason for the high conductivity.