Browse > Article
http://dx.doi.org/10.4283/JMAG.2015.20.4.342

Nuclear Magnetic Resonance Study of 23Na Nucleus in NaBrO3 Single Crystal  

Yeom, Tae Ho (Department of Laser and Optical Information Engineering, Cheongju University)
Publication Information
Abstract
The nuclear magnetic resonance of the $^{23}Na$ nucleus in a $NaBrO_3$ single crystal was investigated at the temperature range of 200 K~410 K. The tendencies of temperature dependence of the nuclear quadrupole coupling for the two magnetically inequivalent Na(I) and Na(II) centers are found to be opposite to each other. The nuclear spin-lattice relaxation mechanism of $^{23}Na$ in the $NaBrO_3$ crystal is investigated, and the result revealed that the Raman process is dominant in the temperature range investigated. The relaxation process of the $^{23}Na$ nuclear spins was well described by a single exponential function in time. The $T_1$ values of the $^{23}Na$ nuclei in the $NaBrO_3$ single crystal decreased with increasing temperature. The calculated activation energy for the $^{23}Na$ is $0.032{\pm}0.002eV$.
Keywords
magnetic resonance; $NaBrO_3$ crystal; relaxation mechanism; activation energy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Franz, P. Egger, J. Hulliger, J. Findeisen, A. A. Kaminskii, and H. J. Eichler, Phys. Stat. Sol. (b) 210, R7 (1998).   DOI
2 J. Findeisen, J. Hulliger, A. A. Kaminskii, H. J. Eichler, R. Macdonald, P. Franz, and P. Peuser, Phys. Stat. Sol. (a) 172, R5 (1999).   DOI
3 R. W. G. Wyckoff, Crystal Structures, Inter-science Publishers, Inc., New York (1953).
4 L. Pauling, The Nature of the Chemical Bond, Oxford Univ. Press, London (1952).
5 K. Kano, J. Phys. Soc. Jan. 13, 975 (1958).   DOI
6 R. F. Tipsword, J. T. Allender, E. A. Stahl, and C. D. Williams, J. Chem. Phys. 49, 2464 (1968).   DOI
7 C. J. Whidden, C. D. Williams, and R. F. Tipsword, J. Chem. Phys. 50, 507 (1969).   DOI
8 D. D. Early, R. F. Tipsword, and C. D. Williams, J. Chem. Phys. 55, 460 (1971).   DOI
9 E. A. Stahl and R. F. Tipsword, Magn. Resonance in Chemistry 28, 95 (1990).   DOI
10 H. Bayer, Z. Physik 130, 227 (1951).   DOI
11 T. C. Wang, Phys. Rev. 99, 566 (1955).   DOI
12 T. P. Das and E. L. Han, Nuclear Quadrupole Resonance Spectroscopy, Academic Press, New York (1958) Chap. 1.
13 W. W. Simmons, W. J. O'Sullivan, and W. A. Robinson, Phys. Rev. 127, 1168 (1962).   DOI
14 W. E. Blumberg, Phys. Rev. 119, 79 (1960).   DOI
15 A. Abragam, The Principles of Nuclear magnetism, Oxford Univ. Press, Oxford (1961) Chaps. I and IX.
16 R. L. Mieher, Phys. Rev. 125, 1537 (1962).   DOI
17 J. Van Kranendonk, Theory of quadrupolar nuclear spinlattice relaxation, Physica 20, 781 (1954).   DOI