$^{13}C$ Nuclear Magnetic Resonance Study of Graphite Intercalated Superconductor $CaC_6$ Crystals in the Normal State

$CaC_6$ 결정에 대한 정상상태에서의 $^{13}C$ 핵자기공명 측정

  • Kim, Sung-Hoon (Department of Physics, Konkuk University) ;
  • Kang, Ki-Hyeok (Department of Physics, Konkuk University) ;
  • Mean, B.J. (Department of Physics, Konkuk University) ;
  • Ndiaye, B. (Department of Physics, Konkuk University) ;
  • Lee, Moo-Hee (Department of Physics, Konkuk University) ;
  • Kim, Jun-Sung (Department of Physics, Pohang University of Science and Technology)
  • Received : 2010.09.06
  • Accepted : 2010.10.13
  • Published : 2010.10.31

Abstract

$^{13}C$ NMR (nuclear magnetic resonance) measurements have been performed to investigate the local electronic structure of a superconducting graphite intercalation compound $CaC_6$ ($T_c$ = 11.4 K). A large number of single crystals were stacked and sealed in a quartz tube for naturally abundant $^{13}C$ NMR. The spectrum, Knight shift, linewidth, and spin-lattice relaxation time $T_1$ were measured in the normal state as a function of temperature down to 80 K at 8.0 T perpendicular to the c-axis. The $^{13}C$ NMR spectrum shows a single narrow peak with a very small Knight shift. The Knight shift and the linewidth of the $^{13}C$ NMR are temperature-independent around, respectively, +0.012% and 1.2 kHz. The spin-lattice relaxation rate, $1/T_1$, is proportional to temperature confirming a Korringa behavior as for non-magnetic metals. The Korringa product is measured to be $T_1T\;=\;210\;s{\cdot}K$. From this value, the Korringa ratio is deduced to be $\xi$ = 0.73, close to unity, which suggests that the independent-electron description works well for $CaC_6$, without complications arising from correlation and many-body effects.

Keywords

References

  1. N. B. Hannay, T.H. Geballe, B. T. Matthias, K. Andres, P. Schmidt, and D. MacNair, Phys. Rev. Lett. 14, 225(1965). https://doi.org/10.1103/PhysRevLett.14.225
  2. M. S. Dresselhaus and G. Dresselhaus, Adv. in Phys., 51, 1 (2002). https://doi.org/10.1080/00018730110113644
  3. J. E. Weller, M. Ellerby, S. S. Saxena, R. P. Smith, N. T. Skipper, Nature Physics, 1, 39 (2005). https://doi.org/10.1038/nphys0010
  4. N. Emery, C. Herold, M. d'Astuto, V. Garcia, C. Bellin, J. F. Mareche, P. Lagrange, and G. Loupias, Phys. Rev. Lett. 95, 087003 (2005). https://doi.org/10.1103/PhysRevLett.95.087003
  5. G. Lamura, M. Aurino, G. Cifariello, E. D. Gennaro, Andreone, N. Emery, C. Herold, J.-F. Mareche, and P. Lagrange, Phys. Rev. Lett. 96, 107008 (2006). https://doi.org/10.1103/PhysRevLett.96.107008
  6. J. S. Kim, R. K. Kremer, L. Boeri, and F. S. Razavi, Phys. Rev. Lett. 96, 217002 (2006). https://doi.org/10.1103/PhysRevLett.96.217002
  7. D. G. Hinks, D. Rosenmann, H. Claus, M. S. Bailey, and J. D. Jorgensen, Phys. Rev. B 75, 014509 (2007). https://doi.org/10.1103/PhysRevB.75.014509
  8. I. I. Mazin, L. Boeri, O. V. Dolgov, A. A. Golubov, G. B. Bachelet, M. Giantomassi, and O. K. Anderson, Physica C 460-462, 116 (2007). https://doi.org/10.1016/j.physc.2007.03.276
  9. C. P. Slichter, Principles of Magnetic Resonance (Springer Verlag, Berlin, 1989).
  10. W. D. Knight, Solid State Phys. 2, 93 (1956).
  11. G. C. Carter, L. H. Bennett and D. J. Kahan, Prog. Mat. Sci. 20, 295 (1977).
  12. R. E. Watson and A. J. Freeman, Hyperfine Interactions, edited by A. J. Freeman and R. B. Frankel (Academic Press, New York, 1967), p. 53.
  13. R. G. Barnes and E. D. Jones, Solid State Commun. 5, 285 (1967). https://doi.org/10.1016/0038-1098(67)90274-8
  14. Narath and H. T.Weaver, Phys. Rev. 175, 373 (1968). https://doi.org/10.1103/PhysRev.175.373
  15. J. Korringa, Physica (Utrecht) 16, 601 (1950). https://doi.org/10.1016/0031-8914(50)90105-4
  16. G. C. Carter, L. H. Bennett, and D. J. Kahan, Metallic shift in NMR, (Pergamon Press, New York, 1977), p. 15.
  17. D. E. MacLaughlin, O. Pena and M. Lysak, Phys. Rev. B 23, 1039 (1981). https://doi.org/10.1103/PhysRevB.23.1039