DOI QR코드

DOI QR Code

Investigation on structural symmetry of CsCoCl3·2H2O crystals by magic-angle spinning 1H and static 133Cs nuclear magnetic resonance

  • Park, Sang Hyeon (Graduate School of Carbon Convergence Engineering, Jeonju University) ;
  • Jang, Du Chang (Graduate School of Carbon Convergence Engineering, Jeonju University) ;
  • Jeon, Hara (Graduate School of Carbon Convergence Engineering, Jeonju University) ;
  • Gyeong, Oh Yi (Graduate School of Carbon Convergence Engineering, Jeonju University) ;
  • Lim, Ae Ran (Graduate School of Carbon Convergence Engineering, Jeonju University)
  • Received : 2022.03.14
  • Accepted : 2022.03.19
  • Published : 2022.03.20

Abstract

The phase transition temperatures of CsCoCl3·2H2O crystals are investigated via differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Three endothermic peaks at temperatures of 370 K (=TC1), 390 K (=TC2), and 416 K (=TC3) were observed for phase transitions from CsCoCl3·2H2O to CsCoCl3·1.5H2O, to CsCoCl3·H2O, and then to CsCoCl3·0.5H2O, respectively. In addition, the spin-lattice relaxation time T in the rotating frame and T1 in the laboratory frame as well as changes in chemical shifts for 1H and 133Cs near TC1 were found to be temperature dependent. Our analyses results indicated that the changes of chemical shifts, T, and T1 are associated with structural phase transitions near temperature TC1. The changes of chemical shifts, T, and T1 near TC1 were associated with structural phase transitions, owing to the changes in the symmetry of the structure formed of H2O and Cs+ ions. Consequently, the structural symmetry in CsCoCl3·2H2O crystals based on temperature is discussed by the environments of their H and Cs nuclei.

Keywords

Acknowledgement

This research was supported by the Basic Science Research program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2018R1D1A1B07041593, 2016R1A6A1A03012069).

References

  1. N. Thorup, H. Soling, Acta Chem. Scand. 23, 2933 (1969) https://doi.org/10.3891/acta.chem.scand.23-2933
  2. W.J.M. de Jonge, K.V.S. Rama Rao, C.H.W. Swuste, A.C. Botterman, Physica. 51, 620 (1971) https://doi.org/10.1016/0031-8914(71)90154-6
  3. Herweijer, W.J.M. de Jonge, A.C. Botterman, A.L.M. Bongaarts, J.A. Cowen, Phys. Rev. B. 5, 4618 (1972) https://doi.org/10.1103/physrevb.5.4618
  4. A.L.M. Bongaarts, B. van Laar, Phys. Rev. B. 6, 2669 (1972) https://doi.org/10.1103/PhysRevB.6.2669
  5. J. Flokstra, G.J. Gerritsma, A.J.W.A. Vermeulen, Phys. Letters A. 44, 485 (1973) https://doi.org/10.1016/0375-9601(73)90985-7
  6. T. de Neef, J. Phys. Soc. Japan 37, 71 (1974) https://doi.org/10.1143/JPSJ.37.71
  7. J.N. McElearney, Solid State Commun. 24, 863 (1977) https://doi.org/10.1016/0038-1098(77)91231-5
  8. K. Kopinga, Q.A.G. van Vlimmeren, A.L.M. Bongaarts, W.J.M. de Jonge, Physica B. 86-88, 671 (1977) https://doi.org/10.1016/0378-4363(77)90640-4
  9. T. Goto, T. Kawai, J. Phys. Soc. Japan 50, 3531 (1981) https://doi.org/10.1143/JPSJ.50.3531
  10. Y. Ajiro, K. Adachi, M. Mekata, J. Mag. Mag. Mater 31-34, 1141 (1983) https://doi.org/10.1016/0304-8853(83)90833-8
  11. I. Mogi, T. Okamoto, N. Kojima, T. Ban, I. Tsujikawa, J. Phys. Soc. Japan 55, 987 (1986) https://doi.org/10.1143/JPSJ.55.987
  12. A.K. Ghosh, Phys. Rev. B 80, 214418 (2009) https://doi.org/10.1103/physrevb.80.214418
  13. Y.B. Kudasov, A.S. Korshunov, V.N. Pavlov, D.A. Maslov, Physics-Uspekhi 55, 1169 (2012) https://doi.org/10.3367/UFNe.0182.201212a.1249
  14. A.K. Ghosh, J. Magn. Magn. Mater. 324, 2907 (2012) https://doi.org/10.1016/j.jmmm.2012.04.039
  15. J. Strecka, O. Rojas, S.M. de Souza, Phys. Letter A. 383, 2415 (2019)
  16. D.J. Kubicki, D. Prochowicz, A. Pinon, G. Stevanato, A. Hofstetter, S.M. Zakeeruddin, M. Gratzel, L. Emsley, J. Mat. Chem. A 7, 2326 (2019) https://doi.org/10.1039/C8TA11457A
  17. F. Ji, Y. Huang, F. Wang, L. Kobera, F. Xie, J. Klarbring, S. Abbrent, J. Brus, C. Yin, S.I. Simak, I.A. Abrikosov, I.A. Buyanova, W.M. Chen, F. Gao, Advan. Funct. Mater. 30, 2005521 (2020) https://doi.org/10.1002/adfm.202005521
  18. J. Czernek, J. Brus, Chem. Phys. Letters 684, 8 (2017) https://doi.org/10.1016/j.cplett.2017.06.026
  19. C.J. Moon, J. Park, H. Im, H. Ryu, M.Y. Choi, T.H. Kim, J. Kim, Bull. Korean Chem. Soc. 41, 702 (2020) https://doi.org/10.1002/bkcs.12057
  20. A. Abragam, The Principles of Nuclear Magnetism (Oxford: Oxford University Press, 1961)
  21. A.R. Lim, Solid State Commun. 312, 113862 (2020) https://doi.org/10.1016/j.ssc.2020.113862
  22. H. Kwon, S. Lee, S. Hong, A.N. Kiyonga, J.-J. Yi, K. Jung, W.S. Son, J. Kor. Magn. Reson. Soc. 23, 93 (2019) https://doi.org/10.6564/JKMRS.2019.23.4.093
  23. Kim, J.H. Kim, J. Kor. Magn. Reson. Soc. 25, 8 (2021) https://doi.org/10.6564/JKMRS.2021.25.1.008
  24. M.I. Gordon, M.J.R. Hoch, J. Phys. C: Solid State Phys. 11, 783 (1978) https://doi.org/10.1088/0022-3719/11/4/023
  25. A.R. Lim, S.H. Kim, S.Y. Jeong, J. Mol. Struct. 1031, 234 (2013) https://doi.org/10.1016/j.molstruc.2012.09.082
  26. J.L. Koenig, Spectroscopy of Polymers (Elsevier, New York, 1999)
  27. A.R. Lim, S.S. Park, J.H. Chang, AIP Advances 7, 105018 (2017) https://doi.org/10.1063/1.5003981