• Title/Summary/Keyword: spin-coated

Search Result 361, Processing Time 0.025 seconds

Protein Adsorption on the Nickel-coated Glass Slide for Protein Chips

  • Hyun, June-Won;Kim, Shi-Yong;Lee, Sang-Hee;Park, Heon-Yong;Pyee, Jae-Ho;Kim, Sung-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.12
    • /
    • pp.1724-1728
    • /
    • 2002
  • The adsorption of proteins on the surface of glass slides is essential for the construction of protein chips. Here, we report that a Histidine (His)-tagged protein protein has been efficiently adsorbed on glass coated with nickel. A variety of nickel chloride-coated plates were prepared by the spin-coating method and adsorbed to the His-tagged protein. When the protein was adsorbed onto the surface of a variety of nickel chloride-coated glass slides, the efficiency of protein adsorption was dependent upon the coating conditions such as nickel chloride concentration, the spin speed and the drying temperature. The slides appropriate for protein adsorption were obtained when the slides were coated with 11%(w/w) of $NiCl_2$ at the spin speed of 4000 rpm for 20 sec and then dried at higher than 40°C. The physical properties of their nickel chloride thin layer were characterized by scanning electron microscopy. x-ray diffraction and atomic force microscopy, finding that the nickel chloride particles were around 10 nm in diameter and uniformly crystallized at 101 faces. These results show that nickel chloride-coated slides prepared by the spin-coating method are utilizable for the construction of Histagged protein chips.

Rectifying and Nitrogen Monoxide Gas Sensing Properties of a Spin-Coated ZnO/CuO Heterojunction (스핀코팅법으로 제작한 산화아연/산화구리 이종접합의 정류 및 일산화질소 가스 감지 특성)

  • Hwang, Hyeonjeong;Kim, Hyojin
    • Korean Journal of Materials Research
    • /
    • v.26 no.2
    • /
    • pp.84-89
    • /
    • 2016
  • We present the rectifying and nitrogen monoxide (NO) gas sensing properties of an oxide semiconductor heterostructure composed of n-type zinc oxide (ZnO) and p-type copper oxide thin layers. A CuO thin layer was first formed on an indium-tin-oxide-coated glass substrate by sol-gel spin coating method using copper acetate monohydrate and diethanolamine as precursors; then, to form a p-n oxide heterostructure, a ZnO thin layer was spin-coated on the CuO layer using copper zinc dihydrate and diethanolamine. The crystalline structures and microstructures of the heterojunction materials were examined using X-ray diffraction and scanning electron microscopy. The observed current-voltage characteristics of the p-n oxide heterostructure showed a non-linear diode-like rectifying behavior at various temperatures ranging from room temperature to $200^{\circ}C$. When the spin-coated ZnO/CuO heterojunction was exposed to the acceptor gas NO in dry air, a significant increase in the forward diode current of the p-n junction was observed. It was found that the NO gas response of the ZnO/CuO heterostructure exhibited a maximum value at an operating temperature as low as $100^{\circ}C$ and increased gradually with increasing of the NO gas concentration up to 30 ppm. The experimental results indicate that the spin-coated ZnO/CuO heterojunction structure has significant potential applications for gas sensors and other oxide electronics.

Photocatalytic Reactivity of Titanium Dioxide in the Removal of Benzene from Air (공기중의 벤젠제거에 대한 산화티타늄 광촉매 반응특성)

  • 박달근
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.4
    • /
    • pp.389-398
    • /
    • 2000
  • Photocatalytic removal of benzene from air was examined using titanium dioxide photocatalyst films prepared on soda lime glass(50$\times$50$\times$2 mm) by spin coating and chemical vapor deposition. For the measurement of photocatalytic reactivity titanium dioxide coated glass was placed into a batch reactor and concentration of benzene in the reactor was set to abuot 100 ppm, and then illuminated with UV. It was found that catalytic reactivity of titanium dioxide films increased with the increase of titanium dioxide film thickness and then level off beyond a certain film thickness. UV absorption by the films showed the similar trend. The formation of stoichiometric amount of carbon dioxide was confirmed by measurement of carbon dioxide concentration in the reactor. In general spin coated films revealed better photocatalytic reactivity than chemically deposited one within the experimental ranges covered in this study. Morphology and crystal structure of prepared films were investigated by XRD and SEM and they showed significant difference between spin coated films and CVD films. Highest quantum efficiency of prepared titanium dioxide photocatalyst was close to 50%.

  • PDF

Enhanced Performance Characteristics of Polymer Photovoltaics by Adding an Additive-incorporated Active Layer

  • Lee, Hye-Hyeon;Hwang, Jong-Won;Jo, Yeong-Ran;Gang, Yong-Su;Park, Seong-Hui;Choe, Yeong-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.316-316
    • /
    • 2010
  • Thin films spin-coated from solvent solutions are characterized by solution parameters and spin-coating process. In this study, performance characteristics of polymer solar cells were investigated with changing solution parameters such as solvent and additives. The phase-separation between polymer and fullerene is needed to make the percolation pathway for better transportation of hole and electron in polymer solar cells. For this reason, cooperative effects of solvent mixtures adding additives with distinct solubility have been studied recently. In this study, chlorobezene, 1, 2-dichlorbenzene, and chloroform were used as solvent. 1, 8-diiodoctaned and 1, 8-octanedithiol were used as additives and were added into poly(3-hexylthiophene-2, 5-diyl)/[6, 6]-phenyl C61 butyric acid methyl ester (P3HT/PCBM) blends. Pre-patterned ITO glass was cleaned using ultrasonication in mixed solvent with ethyl alcohol, isopropyl alcohol and acetone. PEDOT:PSS was spin-coated on to the ITO substrate at 3000rpm and was baked at $120^{\circ}C$ for 10min on the hotplate. The prepared solution was spin-coated at 1000rpm and the spin-coated thin film was dried in the Petri dishes. Al electrode was deposited on the thin film by thermal evaporation. The devices were annealed at $120^{\circ}C$ for 30min. By adding 2.5 volume percent of additives into the chlorobenzene from that bulk heterojunction films consisting of P3HT/PCBM, the power efficiency (AM 1.5G conditions) was increased from 2.16% to 2.69% and 3.12% respectively. We have investigated the effect of additives in P3HT/PCBM blends and the film characteristics and the film characteristics including J-V characteristics, absorption, photoluminescence, X-ray diffraction, and atomic force microscopy to mainly depict the morphology control by doping additives.

  • PDF

Electrochemical Impedance Analysis of the Spin Coated V2O5 Xerogel (Spin Coated V2O5 Xerogel 박막 전극의 임피던스 특성 연구)

  • Park, Heai-Ku
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.382-387
    • /
    • 1999
  • The processes and the kinetics of the lithium intercalation into the spin coated $V_2O_5$ xerogel prepared by the sol-gel processing have been studied employing impedance analyzer. Homogeneous and quasi-isotropic thin films of the xerogel can be obtained as a result of random distribution of the $V_2O_5$ gels on the substrate by the use of the spin coating. Effective diffusion coefficient and charge transfer resistance vary more than one order of magnitude at high and low lithium composition in $V_2O_5$ xerogel, respectively.

  • PDF

Indium Sulfide and Indium Oxide Thin Films Spin-Coated from Triethylammonium Indium Thioacetate Precursor for n-Channel Thin Film Transistor

  • Dao, Tung Duy;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3299-3302
    • /
    • 2014
  • The In2S3 thin films of tetragonal structure and In2O3 films of cubic structure were synthesized by a spin coating method from the organometallic compound precursor triethylammonium indium thioacetate ($[(Et)_3NH]^+[In(SCOCH_3)_4]^-$; TEA-InTAA). In order to determine the electron mobility of the spin-coated TEA-InTAA films, thin film transistors (TFTs) with an inverted structure using a gate dielectric of thermal oxide ($SiO_2$) was fabricated. These devices exhibited n-channel TFT characteristics with a field-effect electron mobility of $10.1cm^2V^{-1}s^{-1}$ at a curing temperature of $500^{\circ}C$, indicating that the semiconducting thin film material is applicable for use in low-cost, solution-processed printable electronics.

Slot-Die Coating of PEDOT : PSS for Large-Area OLED Lighting Sources (대면적 OLED 면광원을 위한 PEDOT : PSS 슬롯다이 코팅)

  • Choi, Kwang-Jun;Lee, Jin-Young;Jeon, Kyung-Jun;Yoo, Su-Ho;Park, Jong-Woon;Seo, Hwa-Il;Seo, Yu Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.1
    • /
    • pp.61-65
    • /
    • 2015
  • We have fabricated poly(3,4-ethylenedioxythiophene) : poly(4-styrenesulfonate) (PEDOT : PSS) thin films using a slotdie coater for the applications of OLED lightings. It is demonstrated that the properties of slot-die coated PEDOT : PSS films are comparable with those of spin-coated ones. Namely, the average and peak-to-peak roughness of the slot-die coated 50-nm-thick PEDOT : PSS film are measured to be as low as 0.247 nm and 1.3 nm, respectively. Moreover, we have obtained excellent thickness uniformity (~1.91%). With the slot-die coated PEDOT : PSS films, we have fabricated green phosphorescent OLED devices. For comparison, we have also fabricated OLED devices with spin-coated PEDOT : PSS films. Both show almost no discrepancy in device performance. The power efficiency (25.4 lm/W) and emission uniformity (77%) of OLEDs with slot-die coated PEDOT : PSS films are shown to be slightly lower than those (27.3 lm/W, 80%) of OLEDs with spin-coated PEDOT : PSS films at the luminance of 1,000nit, increasing the feasibility of using a slot-die coating process for the fabrication of large-area OLED lighting sources at a competitive price.

Polysilicon Thin Film Transistors on spin-coated Polyimide layer for flexible electronics

  • Pecora, A.;Maiolo, L.;Cuscuna, M.;Simeone, D.;Minotti, A.;Mariucci, L.;Fortunato, G.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.261-264
    • /
    • 2007
  • We developed a non self-aligned poly-silicon TFTs fabrication process at two different temperatures on spin-coated polyimide layer above Si-wafer. After TFTs fabrication, the polyimide layer was mechanically released from the Si-wafer and the devices characteristics were compared. In addition self-heating and hot-carrier induced instabilities were analysed.

  • PDF

Characteristics of Tin Oxide Thin Film Grown by Atomic Layer Deposition and Spin Coating Process as Electron Transport Layer for Perovskite Solar Cells (원자층 증착법과 용액 공정법으로 성장한 전자 수송층 산화주석 박막의 페로브스카이트 태양전지 특성)

  • Ki Hyun Kim;Sung Jin Chung;Tae Youl Yang;Jong Chul Lim;Hyo Sik Chang
    • Korean Journal of Materials Research
    • /
    • v.33 no.11
    • /
    • pp.475-481
    • /
    • 2023
  • Recently, the electron transport layer (ETL) has become one of the key components for high-performance perovskite solar cell (PSC). This study is motivated by the nonreproducible performance of ETL made of spin coated SnO2 applied to a PSC. We made a comparative study between tin oxide deposited by atomic layer deposition (ALD) or spin coating to be used as an ETL in N-I-P PSC. 15 nm-thick Tin oxide thin films were deposited by ALD using tetrakisdimethylanmiotin (TDMASn) and using reactant ozone at 120 ℃. PSC using ALD SnO2 as ETL showed a maximum efficiency of 18.97 %, and PSC using spin coated SnO2 showed a maximum efficiency of 18.46 %. This is because the short circuit current (Jsc) of PSC using the ALD SnO2 layer was 0.75 mA/cm2 higher than that of the spin coated SnO2. This result can be attributed to the fact that the electron transfer distance from the perovskite is constant due to the thickness uniformity of ALD SnO2. Therefore ALD SnO2 is a candidate as a ETL for use in PSC vacuum deposition.

A Study on Fractal Analysis and 3D Images of Surface on BST Thin Films. (BST 박막 표면의 프랙탈 분석 및 3D 이미지 특성)

  • Hong, Kyung-Jin;Min, Yong-Ki;Cho, Jae-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.103-106
    • /
    • 2002
  • The applicability of models based on fractal morphology to characterize $(Ba\;Sr)TiO_{3}$ thin film surfaces was investigated. The fractal morphology of coated barium strontium titan oxide thin film surfaces was described using fractal dimension from scanning electro microscopy image. The $(Ba\;Sr)TiO_{3}$ coating were deposited on silicon wafers using $(Ba\;Sr)TiO_{3}$ solution and spin coater. BST solution was composited by mol ratio, and then spin-coated from 3 times to 5 times coating on $Pt/SiO_{2}/Si$ substrate. Qualitative thin film analysis was performed with scanning electro microscopy (SEM), and surfaces parameters such as average grain diameter, roughness exponent and fractal dimension were determined.

  • PDF