DOI QR코드

DOI QR Code

Protein Adsorption on the Nickel-coated Glass Slide for Protein Chips


Abstract

The adsorption of proteins on the surface of glass slides is essential for the construction of protein chips. Here, we report that a Histidine (His)-tagged protein protein has been efficiently adsorbed on glass coated with nickel. A variety of nickel chloride-coated plates were prepared by the spin-coating method and adsorbed to the His-tagged protein. When the protein was adsorbed onto the surface of a variety of nickel chloride-coated glass slides, the efficiency of protein adsorption was dependent upon the coating conditions such as nickel chloride concentration, the spin speed and the drying temperature. The slides appropriate for protein adsorption were obtained when the slides were coated with 11%(w/w) of $NiCl_2$ at the spin speed of 4000 rpm for 20 sec and then dried at higher than 40°C. The physical properties of their nickel chloride thin layer were characterized by scanning electron microscopy. x-ray diffraction and atomic force microscopy, finding that the nickel chloride particles were around 10 nm in diameter and uniformly crystallized at 101 faces. These results show that nickel chloride-coated slides prepared by the spin-coating method are utilizable for the construction of Histagged protein chips.

Keywords

References

  1. Fung, E. T.; Thulasiaman, V.; Weinberger, S. R.; Dalmasso, E. A. Curr. Opin. Biotechnol. 2001, 12, 65. https://doi.org/10.1016/S0958-1669(00)00167-1
  2. Ramaswamy, S.; Golib, T. R. J. Clin. Oncol. 2002, 20, 1932.
  3. Debouck, C.; Goodfellow, P. N. Nat. Genet. 1999, 21, 48. https://doi.org/10.1038/4475
  4. MacBeath, G.; Schreiber, S. Science 2000, 289, 1760.
  5. Zhu, H.; Bilgin, M.; Bangham, R.; Hall, D.; Casamayor, A.; Bertone, P.; Lan, N.; Jansen, R.; Bidlingmaier, S.; Houfek, T.; Mitchell, T.; Miller, P.; Dean, R. A.; Gerstein, M.; Snyder, M. Science 2001, 293, 2101. https://doi.org/10.1126/science.1062191
  6. Arenkov, P.; Kukhtin, A.; Gemmell, A.; Voloshchuk, S.; Chupeeva, V.; Mirzabekov, A. Anal. Biochem. 2000, 278, 123. https://doi.org/10.1006/abio.1999.4363
  7. Nicolau, D. V.; Taguchi, H.; Taniguchi, H.; Yoshikawa, S. Langmuir 1998, 14, 1927. https://doi.org/10.1021/la970802g
  8. Ko, Y. G.; Park, H.; Kim, T.; Lee, J. W.; Park, S. G.; Seol, W.; Kim, J. E.; Lee, W. H.; Kim, S. H.; Park, J. E.; Kim, S. J. Biol. Chem. 2001, 276, 23028.
  9. Nieba, L.; Nieba-Axmann, S. E.; Persson, A.; Hamalainen, M.; Edebratt, F.; Hansson, A.; Lidholm, J.; Magnusson, K.; Karlsson, A. F.; Pluckthun, A. Anal. Biochem. 1997, 252, 217. https://doi.org/10.1006/abio.1997.2326
  10. Hochuli, E.; Bannwarth, H.; Dobeli, R.; Gentz, R.; Stuber, D. Bio/Technology 1988, 6, 1321. https://doi.org/10.1038/nbt1188-1321
  11. Arnold, F. H. Bio/Technology 1991, 9, 151. https://doi.org/10.1038/nbt0291-151
  12. Porath, J.; Calsson, J.; Olsson, I.; Belfrage, G. Nature 1975, 258, 598. https://doi.org/10.1038/258598a0
  13. Monogr. Natl. Bur. Stand. (U.S.) 1971, 25, 81.

Cited by

  1. Macromolecular binding and kinetic analysis with optically sectioned planar format assays vol.137, pp.20, 2012, https://doi.org/10.1039/c2an35134j
  2. Research progress on site-oriented and three-dimensional immobilization of protein vol.49, pp.1, 2015, https://doi.org/10.1134/S0026893315010173
  3. Intelligent Computation for Optimal Fabrication Condition of a Protein Chip with Ni-Co Alloy-Coated Surface vol.21, pp.3, 2016, https://doi.org/10.1177/2211068215577569
  4. Label-free immunosensor based on interdigitated electrodes with Ni–Co nanowires vol.13, pp.9, 2018, https://doi.org/10.1049/mnl.2018.5135
  5. Optimal design of nickel-coated protein chips using Taguchi approach vol.108, pp.1, 2002, https://doi.org/10.1016/j.snb.2004.12.098
  6. Droplet-Based Immunosensor for Simultaneous Immunoassays of Multiplex Histidine-Tagged Proteins vol.25, pp.2, 2002, https://doi.org/10.1177/2472630319879647