• Title/Summary/Keyword: spin Hamiltonian

Search Result 26, Processing Time 0.021 seconds

Cyanide-Bridged CrIIIMnII Binuclear Complexes Based on [Mn(phen)2]2+ and Dicyanidechromate(III) Building Blocks: Syntheses, Crystal Structures, and Magnetic Properties

  • Li, Guo-Ling;Zhang, Li-Fang;Ni, Zhong-Hai;Kou, Hui-Zhong;Cui, Ai-Li
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1675-1680
    • /
    • 2012
  • Three new cyanide-bridged $Cr^{III}Mn^{II}$ binuclear complexes, $[Mn(phen)_2Cl][Cr(bpmb)(CN)_2]{\cdot}H_2O$ ($\mathbf{1}$) (phen = 1,10-phenanthroline, $bpdmb^{2-}$ = 1,2-bis(pyridine-2-carboxamido)-4-methyl-benzenate), $[Mn(phen)_2Cl][Cr(bpmb)-(CN)_2]{\cdot}H_2O$ ($\mathbf{2}$) ($bpdmb^{2-}$ = 1,2-bis(pyridine-2-carboxamido)-4,5-dimethyl-benzenate), and $[Mn(phen)_2Cl]-[Cr(bpClb)(CN)_2]{\cdot}CH_3OH{\cdot}H_2O$ ($\mathbf{3}$) ($bpClb^{2-}$ = 1,2-bis(pyridine-2-carboxamido)-4-chloro-benzenate) were obtained based on $Mn(phen)_2Cl_2$ and a series of dicyanidechromate(III) building blocks. Single crystal X-ray diffraction analysis shows the structures of the three complexes are dimeric type with two different metal centers linked by a cyanide group from corresponding dicyanidechromate(III) building block. Magnetic investigations indicate the existence of relatively weak antiferromagnetic coupling between Cr(III) and Mn(II) ions with best-fit constants $J_{CrMn}=-2.78(5)cm^{-1}$ for $\mathbf{1}$, $J_{CrMn}=-3.02(2)cm^{-1}$ for $\mathbf{2}$ and $J_{CrMn}=-2.27(3)cm^{-1}$ for $\mathbf{3}$ based on the spin exchange Hamiltonian = $-2J_{CrMn}\hat{S}_{Cr}\hat{S}_{Mn}$. The magneto-structural correlation of cyanide-bridged $Cr^{III}Mn^{II}$ complexes has been discussed at last.

Thermal Effects on Stoichiometric LiTaO3 Single Crystal (정비조성 LiTaO3 단결정에 대한 열처리 효과)

  • Yeom, T.H.;Lee, S.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.3
    • /
    • pp.177-180
    • /
    • 2005
  • Ferroelectric $LiTaO_3$ single crystals, grown by the Czochralski method, were thermally treated at temperature $1000^{\circ}C\;and\;1100^{\circ}C$. Electron paramagnetic resonance (EPR) study of stoichiometric $LiTaO_3$ and thermally treated $LiTaO_3$ crystals has been investigated by employing an X-band spectrometer. From the $Fe^{3+}$ EPR spectra, it turned out that there is no change of site location and local site symmetry around $Fe^{3+}$ impurity ion between stoichiometric and thermally treated $LiTaO_3$ single crystals. We confirmed that the ionic state of $Fe^{3+}$ ion changed after thermal treatment. The EPR parameters of $Fe^{3+}$ ion in $LiTaO_3$ single crystals are determined with effective spin Hamiltonian.

Anisotropic Hyperfine Structures of Nd3+ and Er3+ in VTE-Treated Ferroelectric LiNbO3 Crystals (VTE 처리된 강유전 LiNbO3 단결정 내의 Nd3+와 Er3+ 초미세 구조의 비등방성)

  • Park, I.W.;Choh, S.H.;Kim, Y.M.;Chon, U.;Kim, S.S.;Kim, W.J.;Kim, B.G.;Sohn, J.M.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.118-124
    • /
    • 2005
  • We have obtained sharp and clearly resolved ESR spectra of $Nd^{3+}$ and $Er^{3+}$ in vapor transport equilibrium (VTE) treated $LiNbO_3$ crystals, consequently have determined more accurate spin Hamiltonian parameters, than those in congruent samples. The anisotropic hyperfine structures of $^{143}Nd^{3+}$ and $^{145}Nd^{3+}$ in the VTE-treated crystals at liquid helium temperature have been analyzed. It is proposed that both rare earth ions favor the lithium site in $LiNbO_3$ from the consideration of the determined anisotropic g-values.

Magneto-optical Properties of 55Mn-doped SrTiO3 Single Crystal (55Mn이 첨가된 SrTiO3 단 결정의 광 전이 특성연구)

  • Bae, Kyu-Chan;Park, Jung-Il;Lee, Hyeong-Rag
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.6
    • /
    • pp.208-213
    • /
    • 2011
  • We calculated the EPR (electron paramagnetic resonance) line-shape function. The line-widths of a -doped single crystal was studied as a function of the temperature with 0.5 and 2 at. at a frequency of (X-band). The line-width decreases with increasing temperature, such temperature behavior of the line-width can indicate a motional narrowing of the spectrum, when impurity ions substitute for host ions in an off-center position, and thus there can be fast jumping of dipoles between several symmetrically equivalent configurations. Therefore, the present technique is considered to be more convenient to explain the resonant system as in the case of other optical transition problems.

Ground State Energy of Gd3+ Paramagnetic Ion in PbWO4 : Gd Single Crystal (PbWO4 : Gd 단결정 내의 Gd3+ 상자성 이온에 대한 바닥 상태 에너지)

  • Yeom, Tae Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.2
    • /
    • pp.45-49
    • /
    • 2016
  • Ground state energy levels of $Gd^{3+}$ ion (effective spin S = 7/2) in $PbWO_4$ single crystal doped with $Gd^{3+}$ paramagnetic impurity at tetragonal symmetry are calculated with spectroscopic splitting parameters and zero field splitting parameters using by effective spin Hamiltonian. It turns out that the zero field splitting energies of $Gd^{3+}$ ion were the same regardless of the directions of $PbWO_4$ : Gd single crystal. The calculated energy differences for ${\mid{\pm}7/2}$ > ${\leftrightarrow}{\mid{\pm}5/2}$ >, ${\mid{\pm}5/2}$ > ${\leftrightarrow}{\mid{\pm}3/2}$ >, and ${\mid{\pm}3/2}$ > ${\leftrightarrow}{\mid{\pm}1/2}$ > transitions were 6.9574 GHz, 6.9219 GHz, and 15.8704 GHz, respectively when the applied magnetic field is zero. The calculated energy level diagrams were different for different directions of applied magnetic field. For B // a- and c-axis, the energy level diagrams are calculated and discussed.

Electron Paramagnetic Resonance Study of impurity Fe3+ ion in LiTaO3 single crystal (Fe3+ 불순물이 첨가된 LiTaO3 단결정에서의 전자 상자성 공명 연구)

  • Min, S.G.;Yeon, T.H.;Lee, S.H.;Lee, M.K.;Shin, H.K.;Yu, Y.M.;Kim, T.H.;Yu, S.C.
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.4
    • /
    • pp.171-175
    • /
    • 2003
  • Electron paramagnetic resonance (EPR) of Fe$^{3+}$ in LiTaO$_3$ single crystal, grown by Czochralski method, has been studied by employing an X-band spectrometer. Resonance spectra of Fe$^{3+}$ ion on the crystallographic principal axes were obtained with 9.447 ㎓ at room temperature. The spectroscopic splitting parameter g and zero-field splitting (ZFS) parameter D (= 3 B$_{2}$sup 0/) are calculated with effective spin Hamiltonian. Fe$^{3+}$ center in stoichometric single crystal turns out to be different with that in congruent single crystal reported previously. From the analysis of temperature dependence of resonance fields for Fe$^{3+}$ ion, there is no any phase transition at the temperature range (from -160 $^{\circ}C$ to 20 $^{\circ}C$).