DOI QR코드

DOI QR Code

Thermal Effects on Stoichiometric LiTaO3 Single Crystal

정비조성 LiTaO3 단결정에 대한 열처리 효과

  • Published : 2005.06.01

Abstract

Ferroelectric $LiTaO_3$ single crystals, grown by the Czochralski method, were thermally treated at temperature $1000^{\circ}C\;and\;1100^{\circ}C$. Electron paramagnetic resonance (EPR) study of stoichiometric $LiTaO_3$ and thermally treated $LiTaO_3$ crystals has been investigated by employing an X-band spectrometer. From the $Fe^{3+}$ EPR spectra, it turned out that there is no change of site location and local site symmetry around $Fe^{3+}$ impurity ion between stoichiometric and thermally treated $LiTaO_3$ single crystals. We confirmed that the ionic state of $Fe^{3+}$ ion changed after thermal treatment. The EPR parameters of $Fe^{3+}$ ion in $LiTaO_3$ single crystals are determined with effective spin Hamiltonian.

Czochralski방법을 사용하여 정비조성(stoichiometric)으로 성장시킨 강유전체 $LiTaO_3$, 단결정을 $1000^{\circ}C$$1100^{\circ}C$에서 각각 열처리하였다. 열처리한 시료와 열처리하지 않은 정비조성 $LiTaO_3$ 단결정에 대하여 전자 상자성 공명(EPR : electron paramagnetic resonance) 실험을 하였다. X-band(9.21 GHz) 전자 상자성 공명 스펙트로미터를 사용하여 얻은 $Fe^{3+}$ 상자성 불순물 이온의 공명 흡수선을 분석한 결과 정비조성 $LiTaO_3$ 단결정내의 $Fe^{3+}$ 상자성 불순물 이온의 위치(site location)와 국소 대칭성(local site symmetry)은 열처리 후에도 변화가 없는 것을 알 수 있었다. 그러나 $1000^{\circ}C$$1100^{\circ}C$에서 열처리 한 단결정의 경우에는 $v$ 이온이 $Fe^{2+}$ 이온으로 원자가 상태가 바뀌는 것을 화인 하였다. 또한 유효 스핀 하밀토니안을 이용하여 EPR 상수를 계산하였다.

Keywords

References

  1. T. Pliska, D. Fluck, and P. Gunter, in Nonlinear Optical Effects and Materials, edited by P. Gunter (Springer-Verlag, Berlin, 2000), Chap. 6, pp. 479-482
  2. J. Imbrock, S,. Wevering, K. Buse, and E. Kratzig, J. Opt. Soc. Am. B, 16, 1392(1999) https://doi.org/10.1364/JOSAB.16.001392
  3. T. Hatanaka, K Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K Kitamura, Opt. Lett., 25, 651(2000) https://doi.org/10.1364/OL.25.000651
  4. G.E. Peterson, AA Ballman, P.V. Lenzo, and P.M. Bridenbaugh, Appl. Phys. Lett., 5, 62(1964) https://doi.org/10.1063/1.1754053
  5. P.Y. Lenzo, E.G Spencer, and K. Nassau, J. Opt. Sea. Am., 56, 633(1966) https://doi.org/10.1364/JOSA.56.000966
  6. E.H. Truner, Appl. Phys. Lett., 8, 303(1966) https://doi.org/10.1063/1.1754449
  7. J.A. Giordmaine and R.C. Miller, Phys. Rev. Lett., 14, 973(1965) https://doi.org/10.1103/PhysRevLett.14.965
  8. G.D. Boyd, R.C. Miller, K Nassau, W.L. Bond, and A. Savage, Appl. Phys. Lett., 5, 234(1964) https://doi.org/10.1063/1.1723604
  9. R.C. Miller, G.D. Boyd, and A. Savage, Appl. Phys. Lett., 6, 77(1965) https://doi.org/10.1063/1.1754174
  10. R.G Smith, K Nassau, and M. F. Galvin, Appl. Phys. Lett., 7, 256(1965) https://doi.org/10.1063/1.1754246
  11. A.A. Ballman, J. Am. Ceram. Soc., 48, 112(1965) https://doi.org/10.1111/j.1151-2916.1965.tb11814.x
  12. K. Nassau, H.J. Levinstein, and G.M. Loiacono, J. Phys. Chem. Solids, 27, 983(1967)
  13. H.J. Donnerberg and O.F. Schirmer, Solid State Comm., 63, 29(1985)
  14. 미야자와 신타로, 광학결정, 한국경제신문(1999), 30-31
  15. A. Ashkin, A.GD. Boyd, J.M. Dziedzic, R.G Smith, A.A. Ballman, H.J. Levinstein, and K. Nassau, Appl. Phys. Lett., 9, 72(1966) https://doi.org/10.1063/1.1754607
  16. F.S. Hen, J.T. Lamacchia, and D.B. Fraser, Appl. Phys. Lett., 13, 223(1968) https://doi.org/10.1063/1.1652580
  17. I.P. Kaminow and J.R. Carruthers, Appl. Phys. Lett., 22, 326(1973) https://doi.org/10.1063/1.1654657
  18. D. Liu, L. Liu, Y. Liu, C. Zhou, and L. Xu, Optics Commun., 197, 187(2001) https://doi.org/10.1016/S0030-4018(01)01407-9
  19. M. Lee, I.G Kim, S. Takekawa, Y. Furukawa, Y. Uchida, and K. Kitamura, J. Appl. Phys., 89, 5311(2001) https://doi.org/10.1063/1.1328057
  20. D.W. Yoon and O. Eknoyan, J. Lithwave Tech., 6(6), 877(1988) https://doi.org/10.1109/50.4076
  21. B. Herreros and G. Lifante, Appl. Phys. Lett., 66(12), 1449(1995) https://doi.org/10.1063/1.113650
  22. 정대식, 노용래, 박경학, 김유성, RIST 연구논문, 8(1), 137(1994)
  23. T.H. Yeom, S.H. Choh, and KS. Hong, J. Korean Phys. Soc., 25, 62(1992)
  24. H.W Shin, S.H. Choh, T.H. Yeom, and K.S. Hong, J. Korean Phys. Soc., 32, S662(1998)
  25. T.H. Yeom, S.H. Choh, Y.M. Chang, and C. Rudowicz, Phys. Stat. Sol. (b), 185, 417(1994) https://doi.org/10.1002/pssb.2221850212
  26. T.H. Yeom and S.H. Lee, J. Magnetics, 6, 77(2001)
  27. T.H. Yeom, J. Phys.: Condens. Matter, 13, 10471(2001) https://doi.org/10.1088/0953-8984/13/46/315
  28. B.T. Matthias and J.P. Rerneika, Phys. Rev., 76, 1886(1947)
  29. S.C. Abrahams, J.M. Reddy, and J.L. Bernstein, J. Phys. Chem. Solids, 27, 97(1966)
  30. S.C. Abrahams, WC. Hamilton, and J.M. Reddy, J. Phys. Chem. Solids, 27, 1019 (1966) https://doi.org/10.1016/0022-3697(66)90074-6
  31. S.C. Abrahams, P. Marsh, Acta Cryst. B48, 61 (1986)
  32. C. Y. Chen, K.L. Sweeney, and L.E. Hlliburton, Phys. Stat. Sol., 81, 253(1984) https://doi.org/10.1002/pssa.2210810127
  33. W.A. Bonner, W.H. Grodbiewicz, and L.G. van Uitert, J. Cryst. Growth, 1, 318(1967) https://doi.org/10.1016/0022-0248(67)90040-1
  34. K.L. Seeney and L.E. Hlliburton, Appl. Phys. Lett., 43, 336(1983) https://doi.org/10.1063/1.94347
  35. J.L. Ketchum, K.L. Sweeney, and L.E. Halliburton, Phys. Lett., 94A, 450(1983)
  36. A. Abragam, and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Oxford University Press, Oxford, 1970, chap. 3 and 7
  37. S. Altschuler and B.M. Kozyrev, Electron Paramagnetic Resonance in Compounds of Transition Elements, Wiley, New York, 1974, chap. 3
  38. C. Rudowicz, Mag. Reson. Rev., 13, 1 (1987)
  39. M.J. Mombourquette, J.A. Weil, and D.G McGavin, Operating instruction for Computer Program EPR-NMR ver. 6.0, Univ. of Saskatchewan, Canada, 1995
  40. H. Sathe, L.G. Rowan, and J.-M. Spaeth, J. Phys.: Condens. Matter, 1, 3591 (1989) https://doi.org/10.1088/0953-8984/1/23/004