DOI QR코드

DOI QR Code

Electron Paramagnetic Resonance Study of impurity Fe3+ ion in LiTaO3 single crystal

Fe3+ 불순물이 첨가된 LiTaO3 단결정에서의 전자 상자성 공명 연구

  • Published : 2003.08.01

Abstract

Electron paramagnetic resonance (EPR) of Fe$^{3+}$ in LiTaO$_3$ single crystal, grown by Czochralski method, has been studied by employing an X-band spectrometer. Resonance spectra of Fe$^{3+}$ ion on the crystallographic principal axes were obtained with 9.447 ㎓ at room temperature. The spectroscopic splitting parameter g and zero-field splitting (ZFS) parameter D (= 3 B$_{2}$sup 0/) are calculated with effective spin Hamiltonian. Fe$^{3+}$ center in stoichometric single crystal turns out to be different with that in congruent single crystal reported previously. From the analysis of temperature dependence of resonance fields for Fe$^{3+}$ ion, there is no any phase transition at the temperature range (from -160 $^{\circ}C$ to 20 $^{\circ}C$).

Czochralski방법으로 성장된 정비조성 LiTaO$_3$ 단결정내에 불순물로 첨가되어 있는 Fe$^{3+}$ 이온에 대하여 상온에서 전자 상자성 공명(EPR : Electron Paramagnetic Resonance) 실험을 실행하였다. X-band(9.447 ㎓) 스펙트로미터를 사용하여 Fe$^{3+}$ 이온에 대한 공명 흡수선을 결정학적 주평면에서 시료를 돌려가면서 자기장을 가하여 각도의존 데이터를 얻었다. 이렇게 얻은 공명 자기장을 유효 스핀하밀토니안을 사용하여 분광학적 분리인자 g 및 영자기장 갈라지기(ZFS: Zero Field Splitting) 상수 b$_{2}$sup 0/ (=D)를 계산하였다. 분석결과 정비조성으로 성장시킨 LiTaO$_3$ 단결정에서 얻은 Fe$^{3+}$ 공명중심은 기존에 발표된 congruent 조성으로 성장시킨 단결정의 것과는 다른 것으로 밝혀졌다. 또한 Fe$^{3+}$ 이온에 관한 온도의존 공명 흡수선을 분석한 결과 실험 온도 구간에서는 LiTaO$_3$ 단결정의 어떠한 상변화도 없는 것으로 나타났다.

Keywords

References

  1. 광학결정 미야자와 신타로
  2. Appl. Phys. Lett. v.9 A.Ashkin(et al.) https://doi.org/10.1063/1.1754607
  3. Sov. Phys. Solid State v.27 A.P.Pechney
  4. Phys. Rev. Lett. v.28 D.H.Auston;A.M.Glass;A.A.Ballman https://doi.org/10.1103/PhysRevLett.28.897
  5. Electron. Lett. v.25 E.J.Lim;M.M.Fejer;R.L.Byer https://doi.org/10.1049/el:19890127
  6. Appl. Phys. v.15 E.Kratzig;R.Orlowski https://doi.org/10.1007/BF00928197
  7. Jpn. J. Appl. Phys. v.12 H.Tsuya;Y.Fujimo https://doi.org/10.1143/JJAP.12.1896
  8. Opt. Quant. Elect. v.12 E.Kratzig;R.Orlowski https://doi.org/10.1007/BF00619922
  9. RIST 연구논문 v.8 no.1 정대식;노용래;박병학;김유성
  10. J. Korean Phys. Soc. v.32 H.W.Shin;S.H.Choh;T.H.Yeom;K.S.Hong
  11. Solid State Commun. v.87 T.H.Yeom;Y.M.Chang;C.Rudowicz;S.H.Choh https://doi.org/10.1016/0038-1098(93)90485-6
  12. Phys. Stat. Sol. (b) v.185 T.H.Yeom;S.H.Choh;Y.M.Chang;C.Rudowicz https://doi.org/10.1002/pssb.2221850211
  13. Phys. Stat. Sol. (b) v.185 T.H.Yeom;S.H.Choh;Y.M.Chang;C.Rudowicz https://doi.org/10.1002/pssb.2221850212
  14. 새물리 v.31 염태호;조성호
  15. J. Korean Phys. Soc. v.25 T.H.Yeom;S.H.Choh;K.S.Hong
  16. J. Korean Phys. Soc. v.28 T.H.Yeom;K.T.Han;S.H.Choh;K.S.Hong
  17. J. Korean Phys. Soc. v.27 S.W.Ahn;J.S.Kim;S.H.Choh;T.H.Yeom
  18. Bull. Mag. Resonance v.17 S.H.Choh;T.H.Yeom;S.W.Ahn
  19. J. Korean Phys. Soc. v.29 T.H.Yeom;S.W.Ahn;S.H.Choh
  20. J. Phys. : Condens. Matter v.13 T.H.Yeom https://doi.org/10.1088/0953-8984/13/46/315
  21. J. Phys. : Condens. Matter v.1 H.Sothe;L.G.Rowan;J.M.Spaeth https://doi.org/10.1088/0953-8984/1/23/004
  22. J. Appl. Cryst. v.3 R.L.Barns;J.R.Carruthers https://doi.org/10.1107/S0021889870006490
  23. J. Phys. Chem. Solids v.27 S.C.Abrahams;J.M.Reddy;J.L.Bernstein https://doi.org/10.1016/0022-3697(66)90072-2
  24. J. Chem. Phys. v.50 A.M.Glass https://doi.org/10.1063/1.1671234
  25. J. Phys. Chem. Solids v.27 S.C.Abrahams;W.C.Hamilton;J.M.Reddy https://doi.org/10.1016/0022-3697(66)90074-6
  26. Acta cryst. v.B48 S.C.Abrahams;P.Marsh
  27. J. Phys. Chem. Solids v.34 S.C.Abrahams;E.Buehler;C.Hmilton;S.J.Laplaca https://doi.org/10.1016/0022-3697(73)90047-4
  28. Phys. Stat. Sol. v.81 C.Y.Chen;K.L.Sweeney;L.E.Hlliburton https://doi.org/10.1002/pssa.2210810127
  29. J. Crys. Growth v.1 W.A.Bonner;W.H.Grodbiewicz;L.G.van Uitert https://doi.org/10.1016/0022-0248(67)90040-1
  30. Mat. Res. Bull. v.4 B.A.Scott;E.A.Giess;D.F.Okane https://doi.org/10.1016/0025-5408(69)90024-5
  31. J. Chem. Phys. v.56 no.7 J.J.Towner;Y.M.Kim;H.S.Story https://doi.org/10.1063/1.1677745
  32. Phys. Lett. v.27A T.Takeda;A.Watanabe;K.Sugihara
  33. Electron Paramagnetic Resonance of Transition Ions A.Abragam;B.Bleaney
  34. Electron Paramagnetic Resonance in Compounds of Transition Elements S.Altschuler;B.M.Kozyrev
  35. Mag. Reson. Rev. v.13 C.Rudowicz
  36. Operating Instruction for Computer Program EPR-NMR(ver. 6.0) M.J.Mombourquette;J.A.Weil;D.G.Mcgavin

Cited by

  1. Single Crystal vol.24, pp.3, 2014, https://doi.org/10.4283/JKMS.2014.24.3.071