• Title/Summary/Keyword: spherically symmetric

Search Result 26, Processing Time 0.021 seconds

Deformation characteristics of spherical bubble collapse in Newtonian fluids near the wall using the Finite Element Method with ALE formulation

  • Kim See-Jo;Lim Kyung-Hun;Kim Chong-Youp
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.2
    • /
    • pp.109-118
    • /
    • 2006
  • A finite-element method was employed to analyze axisymmetric unsteady motion of a deformable bubble near the wall. In the present study a deformable bubble in a Newtonian medium near the wall was considered. In solving the governing equations a structured mesh generator was used to describe the collapse of highly deformed bubbles with the Arbitrary Lagrangian Eulerian (ALE) method being employed in order to capture the transient bubble boundary effectively. In order to check the accuracy of the present FE analysis we compared the results of our FE solutions with the result of the collapse of spherical bubbles in a large body of fluid in which solutions can be obtained using a 1D FE analysis. It has been found that 1D and 2D bubble deformations are in good agreement for spherically symmetric problems confirming the validity of the numerical code. Non-spherically symmetric problems were also solved for the collapse of bubble located near a plane solid wall. We have shown that a microjet develops at the bubble boundary away from the wall as already observed experimentally. We have discussed the effect of Reynolds number and distance of the bubble center from the wall on the transient collapse pattern of bubble.

Finite Element Formulation for Axisymmetric Linear Viscoelastic Problems (축대칭 선형 점탄성 구조물의 정적 유한요소해석)

  • Oh Guen;Sim Woo-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.321-332
    • /
    • 2005
  • In this paper, the time-domain finite element formulations for axisymmetric linear viscoelastic problems, especially for the viscoelastic hollow sphere and cylinder, under various boundary conditions are presented with the theoretical solutions of them obtained by using the elastic-viscoelastic correspondence principle. It is assumed that the viscoelastic material behaves like a standard linear solid in distortion and elastically in dilatation. Numerical examples are solved based on the spherically symmetric, axisymmetric and plane strain finite element models. Good agreements are obtained between numerical and theoretical solutions, which shows the validity and accuracy of the presented method.

ASPHERICAL DUST ENVELOPES AROUND OXYGEN-RICH AGB STARS

  • Suh, Kyung-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.4
    • /
    • pp.303-310
    • /
    • 2006
  • We model the aspherical dust envelopes around O-rich AGB stars. We perform the radiative transfer model calculations for axisymmetric dust distributions. We simulate what could be observed from the aspherical dust envelopes around O-rich AGB stars by presenting the model spectral energy distributions and images at various wave-lengths for different optical depths and viewing angles. The model results are very different from the ones with spherically symmetric geometry.

ON A CLASS OF LOCALLY PROJECTIVELY FLAT GENERAL (α, β)-METRICS

  • Mo, Xiaohuan;Zhu, Hongmei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1293-1307
    • /
    • 2017
  • General (${\alpha},{\beta}$)-metrics form a rich class of Finsler metrics. They include many important Finsler metrics, such as Randers metrics, square metrics and spherically symmetric metrics. In this paper, we find equations which are necessary and sufficient conditions for such Finsler metric to be locally projectively flat. By solving these equations, we obtain all of locally projectively flat general (${\alpha},{\beta}$)-metrics under certain condition. Finally, we manufacture explicitly new locally projectively flat Finsler metrics.

RADIATIVE TRANSFER IN ANISOTROPICALLY SCATTERING MEDIUM: A MONTE CARLO APPROACH (비등방 산란 매질에서의 복사전달 문제의 몬테카를로 해법)

  • PARK CHAN;HONG SEUNG SOO
    • Publications of The Korean Astronomical Society
    • /
    • v.14 no.1
    • /
    • pp.23-32
    • /
    • 1999
  • We have developed a Monte Carlo code, which solves the problem of radiative transfer in anisotropically scattering atmosphere. The radiative code is flexible in handlings of the system geometry, the distribution of scattering particles, and the source-particle geometry. This code treats the case of highly forward throwing scattering. As performance tests, we have compared the result of Monte Carlo calculations with that of Quasi-Diffusion method for a spherically symmetric cloud model.

  • PDF

Numerical Solutions for Thick-Welled Laminated Composite Spheres under Impact Pressure (충격내압을 받는 복합적층 중공구의 수치해)

  • Oh Guen;Sim Woo-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.293-302
    • /
    • 2005
  • In this paper, the thick-walled laminated, orthotropic as well as bimaterial, composite hollow spheres under impact pressure are analyzed in detail by using the semi-discrete finite element method with the Houbolt time-integration scheme which results in unconditionally stable transient numerical results. Numerical results are obtained by using the self-constructed spherically symmetric (one-dimensional) and axially symmetric (two-dimensional) finite element programs, and compared with the previous solutions by other researchers, being shown some of which are incorrect. The finite element package Nastran is also adopted for numerical comparison.

Circumbinary disk modeling of silicate-carbon stars

  • Kwon, Young-Joo;Suh, Kyung-Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.55.2-55.2
    • /
    • 2012
  • Silicate-carbon stars are characterized by oxygen-rich (O-rich) dust features despite their carbon-rich (C-rich) photospheres. While the origin of silicate-carbon stars has been a mystery ever since their discovery, the most widely accepted hypothesis is that the silicate-carbon stars have a low-luminosity companion and the O-rich material is stored in a circumbinary disk or a circumstellar disk even after the primary star becomes a carbon star. In order to study the properties of circumstellar dust envelopes of silicate-carbon stars, we perform radiative transfer model calculations using RADMC-3D with an axi-symmetric dust density distribution (a disk) as well as a spherically symmetric dust distribution. For various dust envelope models with different shapes and chemistry, we calculate the model spectral energy distributions (SEDs) and compare the model results with the observed SEDs of selected 5 silicate-carbon stars. The Circumstellar disk models are fairly well fitted with the observational data of 5 silicate-carbon stars. We find some evidences that the circumbinary disk model could be a better explanation for the origin of silicate carbon stars than the simple detached silicate dust shell model of the transition phase of the stellar chemistry.

  • PDF

ROBUST $L_{p}$-NORM ESTIMATORS OF MULTIVARIATE LOCATION IN MODELS WITH A BOUNDED VARIANCE

  • Georgly L. Shevlyakov;Lee, Jae-Won
    • The Pure and Applied Mathematics
    • /
    • v.9 no.1
    • /
    • pp.81-90
    • /
    • 2002
  • The least informative (favorable) distributions, minimizing Fisher information for a multivariate location parameter, are derived in the parametric class of the exponential-power spherically symmetric distributions under the following characterizing restrictions; (i) a bounded variance, (ii) a bounded value of a density at the center of symmetry, and (iii) the intersection of these restrictions. In the first two cases, (i) and (ii) respectively, the least informative distributions are the Gaussian and Laplace, respectively. In the latter case (iii) the optimal solution has three branches, with relatively small variances it is the Gaussian, them with intermediate variances. The corresponding robust minimax M-estimators of location are given by the $L_2$-norm, the $L_1$-norm and the $L_{p}$ -norm methods. The properties of the proposed estimators and their adaptive versions ar studied in asymptotics and on finite samples by Monte Carlo.

  • PDF

Dust Envelopes around Massive Young Stellar Objects

  • Suh, Kyung-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.329-334
    • /
    • 2008
  • We investigate the spectral energy distributions (SEDs) of Massive Young Stellar Objects (MYSOs) using the various infrared observational data including the Infrared Space Observatory (ISO) data. We model the dust envelopes around the stars using a radiative transfer model for spherically symmetric geometry. Comparing the model results with the observed SEDs of the two MYSOs (AFGL 4176 and AFGL 2591), we derive the relevant dust shell parameters including the dust opacity, the dust density distribution, and dust temperature distribution. We find that the spherical model can produce the SEDs roughly similar to the observations. We expect that the results would be helpful for making more realistic non-spherical dust envelope models for MYSOs.

Influence of Initial Diameter on the Combustion Characteristics of n-heptane Droplet (초기 직경이 n-heptane 액적 연소 특성에 미치는 영향)

  • Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.18 no.2
    • /
    • pp.94-99
    • /
    • 2013
  • The spherically-symmetric burning of an isolated droplet is a dynamic problem that involves the coupling of chemical reactions and multi-phase flow with phase change. For the improved understanding of these phenomena, this paper presents the numerical results on the n-heptane droplet combustion conducted at a 1 atm ambient pressure in three different initial droplet diameter ($d_0$). The main purpose of this study is to provide basic information of droplet burning, extinction and flame behavior of n-heptane and improve the ability of theoretical prediction of these phenomena. To achieve these, the numerical analysis was conducted in terms of normalized droplet diameter ($d/d_0$), flame diameter ($d_f$) and flame standoff ratio (FSR) under the assumptions that the droplet combustion can be described by both the quasi-steady behavior for the region between the droplet surface and the flame interface and the transient behavior for the region between the flame interface and ambient surrounding.