• 제목/요약/키워드: speed of objects

검색결과 500건 처리시간 0.03초

소형 밀리미터파 추적 레이다용 고속 실시간 신호처리기 개발 (Development of High-Speed Real-Time Signal Processing Unit for Small Millimeter-wave Tracking Radar)

  • 김홍락;박승욱;우선걸;김윤진
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.9-14
    • /
    • 2019
  • 소형 밀리미터파 추적 레이다는 저속으로 기동 중인 큰 RCS를 갖는 바다위의 함정 표적에 대하여 TWS(Track While Scan) 방식을 통하여 실시간으로 표적을 탐색, 탐지 하여 추적하는 펄스 방식의 레이더이다. 본 논문에서는 저속으로 기동을 하지만 채프, 디코이 등 다양한 기만체를 운영하는 함정 표적에 대하여 LPRF와 DBS, 및 HRR 신호처리 기법을 통하여 표적 정보를 획득하고 추적하기 위하여 고속의 CPU가 탑재된 보드 개발과 표적정보를 실시간 처리하기 위하여 FPGA(Field Programmable Gate Array)를 활용하여 실시간 FFT 연산이 가능한 DFT(Discrete Fourier Transform) 모듈 설계를 포함한 신호처리기 구조를 설계하고 성능시험을 통해 구현한 신호처리기를 검증하였다.

YOLOv5와 모션벡터를 활용한 트램-보행자 충돌 예측 방법 연구 (A Study of Tram-Pedestrian Collision Prediction Method Using YOLOv5 and Motion Vector)

  • 김영민;안현욱;전희균;김진평;장규진;황현철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권12호
    • /
    • pp.561-568
    • /
    • 2021
  • 최근 자율주행에 관한 기술은 고부가가치 신기술로서 주목받고 있으며 활발히 연구가 진행되고 있는 분야이다. 상용화 가능한 자율주행을 위해서는 실시간으로 정확하게 진입하는 객체를 탐지하고 이동속도를 추정해야 한다. CNN(Convolutional Neural Network) 기반 딥러닝 알고리즘과 밀집광학흐름(Dense Optical Flow)을 사용하는 기존 방식은 실행 속도가 느려 실시간으로 객체를 탐지하고 이동속도를 추정하기에는 한계가 존재한다. 본 논문에서는 트램에 설치된 카메라를 통해 획득된 주행영상에서 딥러닝 알고리즘인 YOLOv5 알고리즘을 활용하여 실시간으로 객체를 탐지를 수행하고, 탐지된 객체영역에서 기존의 밀집광학흐름(Dense Optical Flow) 대신 연산량을 개선한 부분 밀집광학흐름(Local Dense Optical Flow)을 사용하여 객체의 진행 방향과 속력을 빠르게 추정하는 방식을 제안한다. 이를 바탕으로 충돌 시간과 충돌 지점을 예측할 수 있는 모델을 설계하였으며, 이를 통해 트램(Tram)의 주행 중 전방 충돌사고를 방지할 수 있는 시스템에 적용하고자 한다.

Performance Evaluation of a Variable Frequency Heat Pump Air Conditioning System for Electric Bus

  • Peng, Qinghong;Du, Qungui
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권1호
    • /
    • pp.13-22
    • /
    • 2015
  • This study presents a simulation model of a heat pump air conditioning system with a variable capacity compressor and variable speeds fans for electric bus. An experimental sample has been developed in order to check results from the model. Effects on system performance of such working conditions as compressor speed, evaporator fans speeds and the condenser fans speeds have been simulated by means of developed model. The results show that the three speeds can be adjusted simultaneously according to actual working condition so that the AC system can operate under the optimum state which the control objects want to achieve. It would be a good and simple solution to extend the driving ranges of EVs because of the highest efficiency and the lowest energy consumption of AC system.

A review on several methods for fast generation of digital Fresnel holograms

  • Tsang, P.W.M.
    • 한국산업정보학회논문지
    • /
    • 제17권2호
    • /
    • pp.29-32
    • /
    • 2012
  • Computer generated holography (CGH) is technology for generating holograms of synthetic, three dimensional (3D) objects which may not exist in the physical world. The process, however, requires heavy amount of computation as the resolution of a hologram is significantly higher than that of a typical optical image. This paper reviews four modern techniques for fast generation of digital Fresnel holograms which are important in the development of holographic video systems. The methods that will be described include the virtual window, sub-line, wavefront recording plane (WRP), and the interpolative WRP schemes. These works share the common objective to generate digital Fresnel hologram at a speed that is close to the video frame rate, and with complexity which is realizable with affordable computing and reconfigurable hardware devices. The author will present the principles and realization of these works, as well as some potential area of research in digital holography.

Temperature variation in steel beams subjected to thermal loads

  • Abid, Sallal R.
    • Steel and Composite Structures
    • /
    • 제34권6호
    • /
    • pp.819-835
    • /
    • 2020
  • The effects of atmospheric thermal loads on the response of structural elements that are exposed to open environments have been recognized by research works and design specifications. The main source of atmospheric heat is solar radiation, which dominates the variation of the temperature of air, earth surface and all exposed objects. The temperature distribution along the depth of steel members may differ with the geometry configuration, which means that the different-configuration steel members may suffer different thermally induced strains and stresses. In this research, an experimental steel beam was instrumented with many thermocouples in addition to other sensors. Surface temperatures, air temperature, solar radiation and wind speed measurements were recorded continuously for 21 summer days. Based on a finite element thermal analysis, which was verified using the experimental records, several parametric studies were directed to investigate the effect of the geometrical parameters of AISC standard steel sections on their thermal response. The results showed that the overall size of the beam, its depth and the thickness of its elements are of significant effect on vertical temperature distributions and temperature differences.

Design and Implementation of a Main Memory Index Structure in a DBMS

  • Bae, Duck-Ho;Kim, Jong-Dae;Park, Se-Mi;Kim, Sang-Wook
    • International Journal of Contents
    • /
    • 제3권3호
    • /
    • pp.1-5
    • /
    • 2007
  • The main memory DBMS (MMDBMS) efficiently supports various database applications that require high performance since it employs main memory rather than disk as a primary storage. An index manager is an essential sub-component of a DBMS used to speed up the retrieval of objects from a large volume of a database in response to a certain search condition. Previous research efforts on indexing proposed various index structures. However, they hardly dealt with the practical issues occurred in implementing an index manager on a target DBMS. In this paper, we touch these issues and present our experiences in developing the index manager. The main issues are (1) compact representation of an index entry, (2) support of variable-length keys. (3) support of multiple-attribute keys, and (4) support of duplicated keys.

Reinforcement learning-based control with application to the once-through steam generator system

  • Cheng Li;Ren Yu;Wenmin Yu;Tianshu Wang
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3515-3524
    • /
    • 2023
  • A reinforcement learning framework is proposed for the control problem of outlet steam pressure of the once-through steam generator(OTSG) in this paper. The double-layer controller using Proximal Policy Optimization(PPO) algorithm is applied in the control structure of the OTSG. The PPO algorithm can train the neural networks continuously according to the process of interaction with the environment and then the trained controller can realize better control for the OTSG. Meanwhile, reinforcement learning has the characteristic of difficult application in real-world objects, this paper proposes an innovative pretraining method to solve this problem. The difficulty in the application of reinforcement learning lies in training. The optimal strategy of each step is summed up through trial and error, and the training cost is very high. In this paper, the LSTM model is adopted as the training environment for pretraining, which saves training time and improves efficiency. The experimental results show that this method can realize the self-adjustment of control parameters under various working conditions, and the control effect has the advantages of small overshoot, fast stabilization speed, and strong adaptive ability.

관출구로부터 방출되는 약한 충격파에 관한 3 차원 수치해석 (3-Dimensional Computations of the Weak Shock Wave Discharged from the Exit of Duct)

  • 권용훈;신현동;김희동;이동훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1742-1747
    • /
    • 2003
  • When a shock wave is discharged from the exit of a duct, complicated flow is formed near the duct exit. The flow field is much more complicated under the ground effects or any other objects near the exit of a duct, such as the circumstance near the exit of the high-speed railway tunnel. The resulting flow is essentially three-dimensional unsteady with the effects of strong compressibility. In the current study, three-dimensional flow fields of the weak shock wave which is discharged from the exit of a duct are numerically investigated using a CFD method. Computations are performed for the weak shock wave in the range below 1.5. The results obtained show that the directivity and magnitude of the weak shock discharged strongly depend upon the Mach number of initial shock wave and are significantly influenced by the ground effects.

  • PDF

Design and investigation of a shape memory alloy actuated gripper

  • Krishna Chaitanya, S.;Dhanalakshmi, K.
    • Smart Structures and Systems
    • /
    • 제14권4호
    • /
    • pp.541-558
    • /
    • 2014
  • This paper proposes a new design of shape memory alloy (SMA) wire actuated gripper for open mode operation. SMA can generate smooth muscle movements during actuation which make them potentially good contenders in designing grippers. The principle of the shape memory alloy gripper is to convert the linear displacement of the SMA wire actuator into the angular displacement of the gripping jaw. Steady state analysis is performed to design the wire diameter of the bias spring for a known SMA wire. The gripper is designed to open about an angle of $22.5^{\circ}$ when actuated using pulsating electric current from a constant current source. The safe operating power range of the gripper is determined and verified theoretically. Experimental evaluation for the uncontrolled gripper showed a rotation of $19.97^{\circ}$. Forced cooling techniques were employed to speed up the cooling process. The gripper is simple and robust in design (single movable jaw), easy to fabricate, low cost, and exhibits wide handling capabilities like longer object handling time and handling wide sizes of objects with minimum utilization of power since power is required only to grasp and release operations.

Improvement of Network Traffic Monitoring Performance by Extending SNMP Function

  • Youn Chun-Kyun
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 ICEIC The International Conference on Electronics Informations and Communications
    • /
    • pp.171-175
    • /
    • 2004
  • Network management for detail analysis can cause speed decline of application in case of lack band width by traffic increase of the explosive Internet. Because a manager requests MIB value for the desired objects to an agent by management policy, and then the agent responds to the manager. Such processes are repeated, so it can cause increase of network traffic. Specially, repetitious occurrence of sending-receiving information is very inefficient for a same object when a trend analysis of traffic is performed. In this paper, an efficient SNMP is proposed to add new PDUs into the existing SNMP in order to accept time function. Utilizing this PDU, it minimizes unnecessary sending-receiving message and collects information for trend management of network efficiently. This proposed SNMP is tested for compatibility with the existing SNMP and decreases amount of network traffic largely

  • PDF