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a b s t r a c t

A reinforcement learning framework is proposed for the control problem of outlet steam pressure of the
once-through steam generator(OTSG) in this paper. The double-layer controller using Proximal Policy
Optimization(PPO) algorithm is applied in the control structure of the OTSG. The PPO algorithm can train
the neural networks continuously according to the process of interaction with the environment and then
the trained controller can realize better control for the OTSG. Meanwhile, reinforcement learning has the
characteristic of difficult application in real-world objects, this paper proposes an innovative pretraining
method to solve this problem. The difficulty in the application of reinforcement learning lies in training.
The optimal strategy of each step is summed up through trial and error, and the training cost is very high.
In this paper, the LSTM model is adopted as the training environment for pretraining, which saves
training time and improves efficiency. The experimental results show that this method can realize the
self-adjustment of control parameters under various working conditions, and the control effect has the
advantages of small overshoot, fast stabilization speed, and strong adaptive ability.
© 2023 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The once-through steam generator(OTSG) is the hub of the
primary and secondary loop, which has the characteristics of small
volume and strong heat transfer ability. The compact structure is
suitable for an integrated layout [1]. For the casing OTSG, the length
of the single-phase section in the heat transfer tube is shortened in
the low load operation condition, and the secondary side has the
risk of flow instability, which will seriously affect the operation
safety of OTSG. Because of the characteristics of strong coupling, the
control of the OTSG's outlet steam pressure is difficult [2]. To con-
trol the outlet steam pressure, Zhang Yue proposed a structure
using the PID method to adjust the secondary feedwater flow rate
[3]. A new kind of artificial immune algorithm is applied to the
control of the OTSG, the result shows that the algorithm can
improve the dynamic characteristics of OTSG [4]. Literature [5]
proposed a control scheme based on T-S fuzzy neural to the OTSG's
feedwater control system. The system uses a three-impulse control
method [6] to control the main feedwater valve which can
contribute to controlling the steam pressure of the OTSG.
by Elsevier Korea LLC. This is an
Reinforcement learning(RL) is to learn experiences through the
interaction between the agent and the environment to obtain
reward feedback, and finally explore the optimal strategy. It is core
guiding principle is to maximize return [7,8]. After Google's
AlphaGo defeated the world's top Go player Lee Sedol [9], deep
reinforcement learning (DRL) has become a hot research topic
again, and more and more research has been conducted on it.

So far, DRL has been widely used in robotics, energy, heating,
ventilation, air conditioning(HVAC), unmanned aerial vehi-
cle(UAV), and so on. To solve the job shop scheduling problems in
the environment of resource preemption, Wang Xiaohan [10]
used a multi-agent RL method to learn the scheduling strategies.
Deng Xiangtian [11] proposes a novel non-stationary DQN
method for the control of the HVAC. The proposed DQN method
reduces unnecessary energy consumption and is superior to
existing DQN methods in multi-zone control tasks. The moving
UAV's attitude control has strong nonlinear and coupling char-
acteristics. To solve this problem, Qiu Xiaoqi [12] proposed a DRL
attitude controller to realize end-to-end control. Grando Ricardo
Bedin used the Twin Delayed Deep Deterministic Policy Gradient
(TD3) and Soft Actor-Critic (SAC) models to solve the 3D mapless
navigation for UAVs [13]. Zhang Rong proposed an RL algorithm
to optimize the task sequence for the human-robot collaborative
[14]. JaeKwan Park adopts a DRL method to state diagnose the
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safety function status when monitoring the safety functions of
nuclear facilities [15].

Based on the above discussion, the RL is a promising technology
that can solve complex problems, and especially plays an important
role in the control system. Since there is little research on RL in the
field of nuclear energy, this paper focuses on the feasibility of
applying reinforcement learning to practical OTSG control prob-
lems. In the process of reinforcement learning development,
PPO(Proximal Policy Optimization) can be regarded as one of the
most classic algorithms, which mainly benefits from its three
obvious advantages: the algorithm is simple and easy to under-
stand, has strong adaptability, and has excellent effect. It is a
random policy search method. Its learning process is to obtain the
reward values of the environment feedback and find the optimal
strategy in the continuous interaction process. In order to apply
reinforcement learning algorithm to practical control problems,
this paper puts forward an effective approach that the algorithm
should be pre-trained on the environment model and then deploy
to the actual target, so as to realize the application of the method to
the actual environment and achieve better results quickly.
2. Problem statement and preliminaries

2.1. System introduction

This paper regards the integrated pressurized water reactor(-
IPWR) as the research object. The reactor core and the OTSG are
installed on the pressure vessel as shown in Fig. 1. The primary
pump is placed on the pipe connected to the pressure vessel.

OTSG is the key heat exchange component between the primary
and secondary loop in the pressurized water reactor. As can be seen
from Fig.1 below, the reactor coolant is driven by the primary pump
and flows down into the lower chamber of the reactor from the
connection pipe of the primary pump to the pressure vessel. And
then it bends upward and flows into the core, carrying away the
heat generated by the core's self-sustaining chain fission reaction.
The coolant flowing from the core continues to flow upward into
the annular compartment of the OTSG, and then enters the
Fig. 1. Schematic diagram of an IPWR.
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connection pipe of the primary pump after heat exchange with the
feedwater of the secondary side. The main function of the feed
water is to exchange heat with the primary coolant in the OTSG.
After absorbing heat, the feed water becomes a steam-water
mixture. The saturated steam from the OTSG eventually flows
into the turbine and drives it to generate electricity.

2.2. Problem statement

This paper focuses on the control of OTSG. In the process of
tracking control, the main principle is to keep the steam pressure
constant. The feedwater control system monitors the steam pres-
sure and adjusts the feedwater flow according to the steam pres-
sure control strategy. The problem is transformed into the control
research of the feedwater pressure and flow of the OTSG, which
aims to ensure the smooth change of operation parameters in
conjunction with the primary system in the star-stop process,
reducing the thermal impact on the OTSG.

So the overall goal of control is to keep the outlet steam pressure
stable when there is a bounded disturbance, that is,

lim
t/∞

ðpðtÞ�pdÞ¼0

Where p(t) is the steam pressure, pd is the target pressure.

3. System modeling

In order to reduce the training time of the agent and the training
cost of the reinforcement learning algorithm, first of all, we need to
build the model of the IPWR as the environment for interacting
with the agent. It is difficult to use the traditional mechanism
modeling method because of the nonlinear relationship between
the state parameters and the control parameters of the IPWR.
Therefore, researchers have proposed a variety of data-driven
modeling methods, such as data mining algorithms (artificial
neural network(ANN), statistical models (regression), geometric
models, and random models (probability density function
approximation). In the above modeling methods, the neural
network algorithm does not need the complicated modeling pro-
cess with high accuracy, and it has more advantages in the
modeling of nonlinear systems. Therefore, this paper uses a neural
network to fit the IPWR. The establishment of the neural network
model requires reasonable parameters to improve the compre-
hensibility, extensibility, and accuracy of the model.

3.1. Selection of parameters for the system model

The IPWR has a large number of strongly coupled process var-
iables, and the variables in its distributed control system(DCS) even
reach more than 100,000. It is unnecessary to extract all the vari-
ables for modeling. The control goal is to keep the pressure of the
OSTG stable, and also facilitate a better evaluation of the model, we
only need to extract some variables that affect the pressure of the
OSTG and represent the real-time state of the IPWR.

In the process of power operation, the second loop adopts the
control scheme of keeping the steam outlet pressure constant.
Under normal operating conditions, the feedwater flow control
system puts into automatic operation by the regulating valve and
the feedwater pump to ensure the supply of feedwater flow. The
feedwater control system monitors the steam pressure and adjusts
the feedwater flow according to the steam pressure control strat-
egy. The regulating valve is controlled by a PI controller. The main
feedwater regulating valve adopts three impulse control scheme by
steam pressure, feedwater flow, and steam flow, through the
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comparison of the measured steam pressure and set value, and the
comparison of feedwater flow and steam flow, the control signal is
generated to adjust the valve opening, the purpose is to ensure that
the feedwater flow is matched with the demand load. The speed of
the feedwater pump is controlled by the PI controller which pro-
duces a control signal to adjust the speed of the pump and changes
the head of the water pump so that the differential pressure be-
tween the feedwater valve front and back keeps stable. Therefore,
the position of the feedwater valve, the speed of the feedwater
pump, the control parameters Kp and Ki of the PI controller for the
feedwater pump, and the Kp and Ki of the PI controller for the
feedwater valve are selected as the input parameters. Since nuclear
power can represent the entire system state, it is also chosen as the
model input. The output parameters are the outlet pressure of the
OSTG, the differential pressure between the feed water valve front
and back, and the average temperature of the primary loop.
Fig. 2. Schematic diagram of the LSTM.
3.2. Data acquisition and preprocessing

In this paper, the data from an IPWR simulator are selected as
the training sample sets of the model. The main parameters are
shown in Table 1. It includes 25000 sample data which contains a
training data set (20000 samples) and test data set (5000 samples).
Sample data is collected once every 0.25s, and the collection con-
ditions are mainly normal power operation and transient accident
operation.

To establish the model, the training data should be standardized
first to eliminate the difference between data features and facilitate
the calculation and convergence of the model. Due to the different
dimensions of input variables and the large difference in the size
and range of data values, the training speed of the network will be
slow and even can not converge. Therefore, the training data are
normalized and de-normalized. The linear function conversion
method [16] is adopted to convert data into values within the range
of 0e1.
3.3. Neural network structure

The long-term and short-term memory network(LSTM) is a
special form of recurrent neural network (RNN), which is improved
on the basis of RNN [17]. Compared with the ANN, the RNN can
apply the relevant information of historical data to the prediction.
The error backpropagation algorithm of RNN is just as simple as
that of ANN, but it also has the problem of gradient explosion and
gradient disappearance. To solve these two problems, the re-
searchers have developed a neural network model with short and
long-termmemory [18], as shown in Fig. 2. Different from the RNN,
themost obvious improvement of LSTM is that its structure consists
of a cell state C and three gates, namely the forget gate f, the output
gate o, and the input gate i.

At the time of updating weights through the error back-
propagation, some errors can directly enter the input gate and then
pass to the neurons of the next layer, some errors will be forgotten
by the forget gate, thus solving the problem of the gradient ex-
plosion and disappearance, which effectively deal with the
redundancy issues of relevant information in historical data [19,20].
The problem studied in this paper is a typical time series problem,
so the LSTM algorithm is chosen for the IPWR prediction.Where, Xt
Table 1
Main design parameters of an IPWR.

Parameter Nuclear
power(%FP)

Turbine
power(%FP)

Average temperature of the
primary loop(�C)

Steam generator
pressure(Mpa)

Value 100.363 100.119 300.76 4.538
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represents the input at t, ht�1 represents the output of LSTM at t-1,
and Ct�1 represents the memory at t-1. s represents sigmoid acti-
vation function.

Forget gate f determines how much cell state Ct-1 is retained
from cell state ct at time t.

The first step of LSTM network is to determine what old infor-
mation should be forgotten from the previous cell state. Forget gate
ft determines howmuch cell state Ct-1 at time t-1 is retained to the
cell state Ct at time t. bf and Wf are the offset and input weight of
forget gate ft, respectively. The specific expression of ft is as follows:

f t¼s
�
Wf � ðXt;ht�1Þþbf

�
(1)

The second step is to determine what new information should
be entered for the current cell state. First, Xt and ht�1 are used in the
input gate it to determine the cell information. Then Xt and ht�1

obtain new candidate cell information ~Ct through tanh. bi and Wi

are the bias items and input weights of the input gate it, and bc and
Wc are the bias items and input weights of candidate cell states ~Ct,
respectively. The specific calculation method is:

it ¼sðWi � ðXt;ht�1ÞþbiÞ (2)

~Ct ¼ tanhðWc � ðXt;ht�1ÞþbcÞ (3)

The third step is the update of the current cell state. The ft � Ct�1
indicates forgotten information. According to the above calculation,
Ct cell status update value at time t can be calculated. The specific
calculation method is as follows:

Ct ¼ f t � Ct�1 þ it � ~Ct (4)
Steam
flow(kg/s)

Feedwater
flow(kg/s)

Folding step rods
Position(step)

Pressurizer
Pressure(Mpa)

Pressurizer
level(m)

600.656 599.802 602 15.503 1.965
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After calculating the cell status update value, the final step is to
calculate the output gate Ot value. bo and Wo are the offset items
and input weights of output gate Ot respectively, and the final
output result is determined by Ot and Ct. The calculation formula is:

Ot ¼sðWo � ðXt;ht�1ÞþboÞ (5)

ht ¼Ot � tanhðCtÞ (6)
3.4. Analysis of the model performance

Different model parameter of LSTM has obvious effects on the
model's predictive power, such as the number of neurons layer and
the number of neurons in each layer can make the model's
computation grows exponentially and affect the accuracy. The
change in the learning rate will significantly affect the efficiency
and accuracy of the model during training [21].

Therefore, different hyperparameters are set in this experiment.
Through experimental measurement, when the number of neurons
in the hidden layer is 8 and the number of iterations is 100, the
model training effect is the best and the error of mean square
root(RMSE) is the smallest. The comparison results are shown in
Table 2.

In the current research paper about the LSTM neural network
model, the model has the highest efficiency when the number of
neuron layers is 2 or 3. The number of neurons in the hidden layer is
8, and the learning rate is usually selected as 0.001. In this paper,
the learning rate of 0.005 is set as a comparison, and the number of
iterations is set as 150 and 300. The activation function is the tanh
function. Through the results of the experiment, we can determine
the most effective hyperparameters.

The mean square error function (MSE), root mean square error
(RMSE), and mean absolute error (MAE) are used to evaluate the
model. Table 3 shows the experimental results under different
parameters.

According to the results in Table 3, the MSE result is the smallest
0.0005 when the iteration number is 300, the activation function is
the tanh, the learning rate is 0.001, and the neural layers are 2 with
8 hidden neurons. When the iteration number is 150, the activation
function is the tanh, the learning rate is 0.001, the neural layers are
3 with 8 hidden neurons, and the RMSE and MAE are both the
smallest. It is worth mentioning that the MSE value is also very
respectable, only slightly higher than the minimum 0.0005 by
0.0002. Therefore, the hyperparameters of the LSTM model are
selected as the iteration number is 150, the activation function is
the tanh, the learning rate is 0.001, and the neural layers are 3 with
8 hidden neurons in this paper.
4. DRL controller design for OTSG

4.1. Background

RL algorithms are mainly divided into value function-based
Table 2
The RMSE of the LSTM model under different conditions.

The number of neurons in the hidden layer RMSE

6 0.0131
7 0.0137
8 0.0127
9 0.0150
10 0.0133
11 0.0146
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methods and policy gradient-based methods. Traditional RL is
usually based on the value function method. Such as the q-learning
algorithm, but when the state and action space is high-dimensional
continuous, the Q value table cannot be stored. Google Deepmind
team proposed the Deep Q-Network(DQN) algorithm [22], which
can change the updating problem of the Q value table into a
function fitting problem by the neural network. Then, the Deter-
ministic Policy Gradient(DPG) is proved, and the Deep Determin-
istic Policy Gradient (DDPG) algorithm is proposed to realize the
learning of continuous actions [23].

Different from the value function-based methods, the policy
gradient-based methods directly output the specific actions and
directly modify policy parameters through gradient rise using the
environmental feedback. Williams et al. proposed the RL algorithm
which updates the policy gradient through the Monte Carlo sam-
pling, but the state-value function guiding the update direction is
obtained through backtracking, which has low sampling efficiency
[24]. Schulman et al. proposed the Trust Region Policy Opti-
mization(TRPO) method, which limited the updated range of the
output, but affected the implementation efficiency and update
speed [25]. Therefore, The OPENAI team proposed the PPO algo-
rithm to achieve a more concise update method. PPO algorithm has
a good performance for continuous control problems. Based on
Markov Decision Process(MDP), it continues the step selection
mechanism of the policy optimization algorithm, draws on the idea
of the policy-based estimation, and inherits the experience of the
dual network of policy and value in actor-critic methods [26].

4.2. Design of the controller based on PPO for OTSG

The function of the feedwater flow control system is to supply
and adjust feedwater to the OTSG so that the feedwater of the OTSG
and the load of the secondary loop are compatible. The speed
control system of the feedwater pump compares the measured
value of the differential pressure between the feedwater valve front
and back with the setpoint, and then the control signal is generated
to adjust the speed of the feedwater pump which changes the head
of the pump so that the differential pressure between the feed-
water valve front and back maintains around the setpoint. The
feedwater regulating valve adopts the three-element control sys-
tem of the steam pressure, feedwater flow, and steam flow, which
compares the steam pressure and setpoint at first, and then
comparing with the differential between the feedwater flow and
steam flow, the control signal is generated to adjust the valve, so as
to ensure the water supply flow rate and the demand load match.

According to the control strategy of IPWR, this paper innova-
tively adopts the PPO algorithm to control the OTSG of IPWR, as
shown in Fig. 3. The IPWR is the environment of the PPO algorithm.
The agent learns through repeated interaction with the environ-
ment. In each interaction, the agent takes some action to influence
the environment. The purpose of RL is to obtain the optimal cu-
mulative reward through constant interaction with the
environment.

The specific structure of the controller is a double layer(Fig. 4),
the bottom layer is consist of the PI controllers, which control the
feedwater valves and pumps to keep the steam pressure stable. The
layer of the PPO agent of the controller can realize the online self-
adjustment of the control parameters of the PI controller after
training.

The structure of the PPO algorithm is consist of three neural
networks, namely the actor-old network, actor-new network, and
critic network. As can be seen from Fig. 4, after receiving the
environment state (s), the actor-new network outputs an action(a)
through neural network calculation, which acts on the parameter
adjustment of PI controller. After the environment (IPWR) status is



Table 3
Prediction results of the LSTM model under different parameters.

The number of iterations The activation function The learning rate The number of neuron layer The Number of neurons MSE RMSE MAE

150 tanh 0.001 3 8 0.0007 0.0283 0.2101
300 tanh 0.001 3 8 0.0012 0.0629 0.2121
150 tanh 0.005 3 8 0.0071 0.0511 0.3365
300 tanh 0.005 3 8 0.0019 0.0423 0.2308
150 tanh 0.001 2 8 0.0017 0.0523 0.2582
300 tanh 0.001 2 8 0.0005 0.0629 0.2130
150 tanh 0.005 2 8 0.0006 0.0584 0.2345
300 tanh 0.005 2 8 0.0016 0.0323 0.2714

Fig. 3. Controller based on PPO of an IPWR.
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adjusted, it becomes the next environment status (s_). The algo-
rithm also calculates the reward(r) for the interaction. And what
the actor-old network does is store the parameters of the neural
network of the actor-new. To prevent the update steps from being
too large, the PPO algorithm copies parameters from the actor-old
network to the actor-new network before each batch size step.
The critic network is is responsible for the state value function(v)
calculation, which means the cumulative discount rewards when
performing the current policy. The replay buffer stores historical
experiences and then feeds the random samples to train and up-
date actor and critic networks.

4.2.1. Design of state-space
In the process of power operation, the primary loop of IPWR

adopts the control scheme of constant average temperature, and
the secondary loop adopts the scheme of constant main steam
pressure.

Therefore, according to the dynamic characteristic of the OTSG,
this article selects state-spaces including the outlet pressure, the
differential pressure between the feedwater valve front and back,
and the average temperature of the primary loop.

4.2.2. Design of action space
The action space is the type and range of the output of the al-

gorithm. In this paper, the PI control parameter is selected as the
output action of the PPO algorithm, and the dimension is 4 which
includes the PI parameters of the feedwater pump and the
3519
regulating valve, that is action ¼ [Kp1,Ki1, Kp2,Ki2] and the range of
the set points are Kp1 ¼ [0,10], Ki1 ¼ [0,10].

4.2.3. Design of reward function
The reward function is the core of the RL algorithms, which

determines whether the training of the agent can be successful. A
good reward function can guide the agent to quickly learn from the
interaction process, while a bad reward function often leads to
training failure.

In order to make the agent learn the control strategy effectively,
a piecewise reward function is constructed. First, the relative error
functions rv, rp, and rt are defined:

rv ¼ sv� yvðtÞ
sv

; rp ¼ sp� ypðtÞ
sp

; rt ¼ st� ytðtÞ
st

(7)

Where, sv, sp, and st are the target set values, yv is the measured
value of the main steam pressure, yp is the differential pressure
between the feedwater valve front and back, and yt is themeasured
value of the average temperature of the primary loop.

According to the different ranges of absolute relative error, r >
200% is designated as the abnormal area, r > 15% as the large error
area, and r � 15% as the low error area. In the abnormal area, if the
system deviates too far from the target value, a large penalty value
will be given. In the large error zone, the reward value is uniformly
set as �1. In the low error zone, and the system state-space value is
close to the target value, the reward value is positive.



Fig. 4. The specific framework of the PPO controller.
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r1 ¼
8<
:

�10; jrvj>200%
�1;15%< jrvj � 200%

1; jrvj; jrvj � 15%
(8)

r2 ¼
8<
:

�10;
��rp��>200%

�1;15%<
��rp�� � 200%

1;
��rp��; ��rp�� � 15%

(9)

r3 ¼
8<
:

�10; jrtj>200%
�1;15%< jrtj � 200%

1; jrtj; jrtj � 15%
(10)

To sum up, the final reward function is:

R¼ a*r1 þ b*r2 þ c*r3 (11)

Where, a, b, and c are the adjustment coefficients.
4.3. PPO algorithm

The PPO algorithm belongs to the strategy gradient algorithm in
essence. It solves the problem of step size determination in the
policy gradient algorithm with the goal is to maximize the reward
[27e29]. The objective function's parameter q is updated as below,
p is the random strategy:

LðqÞ¼ E½log pðat jst ; qÞAtðst ; atÞ� (12)

In the formula, At(st, at) is the superiority function under the cur-
rent policy:
3520
Atðst ; atÞ¼Qtðst ; atÞ � VtðstÞ (13)

The updating principle of parameter q adopts the policy gradient
algorithm, a is the adjustment coefficient, as follows:

qtþ1 ¼ qt þ aVqLðqtÞ (14)

The objective function is as below:

LðqÞ¼ E
�
pqðat jstÞ
pqoldðat jstÞ

At

�
(15)

qold represents the parameter before the policy is updated.
PPO adds the Kullback-Leibler (KL) divergence on the basis of

the original objective function to measure the difference between
two distributions. The bigger the difference is, the greater the dif-
ference is. d is the precision limitation.

E
�
KL

�
pqoldðat jstÞ;pqðat jstÞ

�� � d (16)

At the same time, the PPO algorithm introduces the penalty
term into the objective function, that is, the objective function is:

LðqÞ¼ E
�
pqðat jstÞ
pqoldðat jstÞ

At � bKL
�
pqoldðat jstÞ;pqðat jstÞ

��
(17)

Where, b is the punishing weight. The truncation function clip is
used to replace the KL divergence to constrain rt(q) and prevent the
big difference between the old and new policies. The ratio rt(q) of
the old and new policies is:



Table 4
Settings for the neural network.

Parameter Actor Critic

Activation function Tanh&softpus Relu
Number of neurons in the input layer 3 3
Number of neurons in the hidden layer 15 15
Number of neurons in output layer 3 1

Table 5
Settings of hyper-parameter.

Parameter Hyper-parameter

Learning rate of actor network 0.0001
Learning rate of critic network 0.0002
Discount factor 0.95
Max step 250
Max episode 300
Batch size 25
Truncation constant 0.2

Fig. 6. Comparison curve of the steam pressure when reducing load.
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rtðqÞ pqðat jstÞ
pqoldðat jstÞ

(18)

The objective function is:

LðqÞ¼ E½minðrtðqÞAt ; clipðrtðqÞ;1� ε;1þ εÞAtÞ� (19)

Where, ε is a hyperparameter.
Fig. 7. Comparison curve of the feedwater flow when reducing load.
5. Experiments and results

5.1. Pretraining

When the target is particularly complex, too large and difficult
to represent, the RL algorithm is difficult to be directly trained and
applied to nuclear power plant tasks due to the difficulty of
training, long training time, and difficult representation of the
environment. Since it is impossible to use the actual nuclear power
plant for training, and in order to shorten the training time and
improve the learning efficiency, this paper uses the trained LSTM
model to replace the actual IPWR, and as the PPO algorithm
Fig. 5. Training effects of the PPO algorithm.
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training environment. After training the RL control method on the
LSTM model, the control model will be saved.

In order to verify the characteristics of the trained control
model, the IPWR simulator is used instead of the actual power
station. After saving the trained model, it is connected to the IPWR
simulator for testing through the communication module. The RL
control algorithm and LSTM environment model are developed
with Python. At the same time, the communication module is
developed to realize the data exchange between the control algo-
rithm and the IPWR simulator.
5.2. Simulation setup

The setting of the PPO algorithm hyperparameter is divided into
two parts: neural network parameters and algorithm hyper-
parameter. The settings of neural network parameter are shown in
Table 4. The hyper-parameters for the PPO algorithm are given in
Table 5. The parameters used in the training and the experiment are
the same.

The pretraining results are shown in Fig. 5. When the number of



Fig. 8. Comparison curve of the steam pressure when increasing load.

Fig. 10. Comparison curve of the steam pressure steps up to 4.537Mpa.
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algorithm iterations reaches the episode number, the training is
stopped. Early in the training process, the reward value is low
because the agent is a bit inexperienced and the number of training
is not enough. The early stage is a process of exploration. With the
increase of iteration number, the agent gradually learns more
experience and get a good control effect, the cumulative reward
value gradually begins to converge, that is to find the optimal
control scheme.
5.3. Analysis of simulation results

In this chapter, transient tests and tracking tests are carried out
on the IPWR simulator to test the performance of the proposed
controller and the control effect is compared with that of the fixed
parameter PI controller.
Fig. 9. Comparison curve of the feedwater flow when increasing load.
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5.3.1. Transient test
In this section, the reducing and increasing load tests are carried

out respectively, and the steam pressure setpoint for both tests is
4.538Mpa.

When the steam turbine load is reduced from 100%FP to 70%FP,
the opening of the steam regulating valve decreases and the steam
pressure increases gradually. As a result of the regulating effect of
the control, the feedwater flow decreases and then the steam
pressure decreases and becomes stable. Figs. 6e7 show the varia-
tion curves of steam pressure and feedwater flow when the steam
turbine load decreases from 100%FP to 70%FP. The pre-trained RL
controller not only has a smaller overshoot than the PID controller
but also has a faster stabilization speed. When the steam turbine
load increases from 70%FP to 100%FP, the comparison curve be-
tween steam pressure and feedwater flow is shown in Figs. 8e9.
Compared with PID control, the RL controller has less overshoot
and improves the response speed of the control system.
Fig. 11. Comparison curves of pressure and feedwater flow.



Fig. 12. Comparison curve of the differential pressure steps up to 0.1595Mpa.

Fig. 13. Comparison curves of feedwater flow and feedwater temperature.
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5.3.2. Tracking test
In order to better illustrate the performance of the method, the

disturbance under the step function is added for comparison
experiment, the step-change experiments of the setpoint of main
steam pressure and the differential pressure between the feed-
water valve front and back are carried out respectively.

Figs. 10e11 shows the comparison curves of the two schemes at
the 100%FPwhen the pressure set point steps down from 4.538Mpa
to 4.537Mpa at the 20s. Figs. 12e13 shows the comparison of the
twomethods when the differential pressure setpoint steps up from
0.1588Mpa to 0.1595Mpa when running at 100%FP for 20s during
the test. Both schemes can effectively stabilize the pressure at the
set point. Although the overshoot of the controller with PPO algo-
rithms is slightly larger than the PI controller in these two exper-
iments, it does not exceed 0.6% of the setpoint, and the stability
time is significantly shorter than the PI controller.
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6. Conclusions

In this paper, a novel controller of IPWR's OTSG with double-
layer using the PPO algorithm is designed in this paper. This con-
trol structure can not only realize the learning of the parameter
adjustment strategy of the upper agent, but also realize the adap-
tive adjustment of the parameters of the bottom PI controller, so as
to realize the end-to-end control. In order to solve the problem that
RL is difficult to apply, we creatively put forward the LSTM neural
network as the environment of the PPO algorithm, which can
reduce the training time of the agent and the training cost of the RL
algorithm. The simulation results show that the controller adopts
RL algorithm can realize the adaptive adjustment of PI parameters
under various working conditions. Compared with the traditional
PI control, it has the advantages of fast response speed and strong
adaptive ability. The pre-training method can solve the problem of
difficult training in the real environment, improve the training ef-
ficiency of the controller, and avoid dangerous states during the
exploration.
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