• 제목/요약/키워드: spectral theorem

검색결과 54건 처리시간 0.022초

A Note on the Spectral Mapping Theorem

  • Jung, Il Bong;Ko, Eungil;Pearcy, Carl
    • Kyungpook Mathematical Journal
    • /
    • 제47권1호
    • /
    • pp.77-79
    • /
    • 2007
  • In this note we point out how a theorem of Gamelin and Garnett from function theory can be used to establish a spectral mapping theorem for an arbitrary contraction and an associated class of $H^{\infty}$-functions.

  • PDF

SPECTRAL DECOMPOSITION FOR HOMEOMORPHISMS ON NON-METRIZABLE TOTALLY DISCONNECTED SPACES

  • Oh, Jumi
    • 대한수학회지
    • /
    • 제59권5호
    • /
    • pp.987-996
    • /
    • 2022
  • We introduce the notions of symbolic expansivity and symbolic shadowing for homeomorphisms on non-metrizable compact spaces which are generalizations of expansivity and shadowing, respectively, for metric spaces. The main result is to generalize the Smale's spectral decomposition theorem to symbolically expansive homeomorphisms with symbolic shadowing on non-metrizable compact Hausdorff totally disconnected spaces.

Spectral mapping theorem and Weyl's theorem

  • Yang, Young-Oh;Lee, Jin-A
    • 대한수학회논문집
    • /
    • 제11권3호
    • /
    • pp.657-663
    • /
    • 1996
  • In this paper we give some conditions under which the Weyl spectrum of an operator satisfies the spectral mapping theorem for analytic functions. Also we show that Weyl's theorem holds for p(T) where T is an operator of M-power class (N) and p is a polynomial on a neighborhood of $\sigam(T)$. Finally we answer an old question of Oberai.

  • PDF

On a clary theorem

  • Ko, Eungil
    • 대한수학회보
    • /
    • 제33권1호
    • /
    • pp.29-33
    • /
    • 1996
  • In this paper we shall generalize a Clary theorem by using the local spectral theory; If $ T \in L(H)$ has property $(\beta)$ and A is any operator such that $A \prec T$, then $\sigma(T) \subseteq \sigma(A)$.

  • PDF

스펙트럼 적응 사상을 이용한 선형시스템의 불량조건 완화기법 (An alleviant technique for solving III-Conditioned Linear Systems Using Spectral Adaptive Mapping)

  • 전재웅;조기선;박종배;신중린
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 A
    • /
    • pp.110-112
    • /
    • 2003
  • This paper presents an alleviant technique for solving ill-conditioned linear systems using spectral adaptive mapping, which is based on spectral mapping theorem. The conventional approaches to solve the ill-conditioned linear systems are divided into reformulation and alleviant technique. So far, the alleviant technique is evaluated the most effective one. In this paper, an adaptive mapping of spectrum is adopted to alleviate the condition number of ill-conditioned linear systems. A shift constant, which is a dominant factor of the spectral adaptive mapping that are proposed, is assessed by the system spectrum. The proposed spectral adaptive mapping technique is tested to demonstrated the validation on several size Hilbert matrices and small scale power systems, which are provide the promising results.

  • PDF

유수정리를 이용한 마이크로스트립 선로의 스펙트럼 영역 해석 (A spectral domain analysis of microstrip lines using a residue theorem)

  • 문병귀;진경수;박병우
    • 전자공학회논문지D
    • /
    • 제35D권1호
    • /
    • pp.8-15
    • /
    • 1998
  • An analysis of the microstripline is started as an assumption of the axial & transveral current distribution. Applying the boundary conditions to the scalar wave equations of a electric & magnetic potential, the two simultaneous coupled integral equations are produced. The electronmagnetic fields in microstrip line can be obtained by solving these two coupled integral equaltion. In general, either a numerical analysis method or a Galerkin method was used to solve them. In this paper, a residue theorem is proposed to solve them. The electromagnetic fields are expressed as integral equations for LSE and LSM mode in the spectral domain. Applying a residue theorem to the Fourier transformed equation and Fourier inverse transformed equation which is necessary for interchanging the space domain and the spectral domain, the electromagnetic fields are expressed as algebraic equations whichare relatively easier to handle. the distributions of the electromagnetic field are shown at the range of -5w/2.leq.x.leq.5w/2, 0.lep.y.leq.4h for z=0. It agrees well with the results of the Quasi-TEM mode analysis.

  • PDF

THE SPECTRAL CONTINUITY OF ESSENTIALLY HYPONORMAL OPERATORS

  • Kim, An-Hyun;Ryu, Eun-Jin
    • 대한수학회논문집
    • /
    • 제29권3호
    • /
    • pp.401-408
    • /
    • 2014
  • If A is a unital Banach algebra, then the spectrum can be viewed as a function ${\sigma}$ : 𝕬 ${\rightarrow}$ 𝕾, mapping each T ${\in}$ 𝕬 to its spectrum ${\sigma}(T)$, where 𝕾 is the set, equipped with the Hausdorff metric, of all compact subsets of $\mathbb{C}$. This paper is concerned with the continuity of the spectrum ${\sigma}$ via Browder's theorem. It is shown that ${\sigma}$ is continuous when ${\sigma}$ is restricted to the set of essentially hyponormal operators for which Browder's theorem holds, that is, the Weyl spectrum and the Browder spectrum coincide.

SPECTRAL THEOREMS ASSOCIATED TO THE DUNKL OPERATORS

  • Mejjaoli, Hatem
    • Korean Journal of Mathematics
    • /
    • 제24권4호
    • /
    • pp.693-722
    • /
    • 2016
  • In this paper, we characterize the support for the Dunkl transform on the generalized Lebesgue spaces via the Dunkl resolvent function. The behavior of the sequence of $L^p_k$-norms of iterated Dunkl potentials is studied depending on the support of their Dunkl transform. We systematically develop real Paley-Wiener theory for the Dunkl transform on ${\mathbb{R}}^d$ for distributions, in an elementary treatment based on the inversion theorem. Next, we improve the Roe's theorem associated to the Dunkl operators.

A NOTE ON WEYL'S THEOREM FOR *-PARANORMAL OPERATORS

  • Kim, An-Hyun
    • 대한수학회논문집
    • /
    • 제27권3호
    • /
    • pp.565-570
    • /
    • 2012
  • In this note we investigate Weyl's theorem for *-paranormal operators on a separable infinite dimensional Hilbert space. We prove that if T is a *-paranormal operator satisfying Property $(E)-(T-{\lambda}I)H_T(\{{\lambda}\})$ is closed for each ${\lambda}{\in}{\mathbb{C}}$, where $H_T(\{{\lambda}\})$ is a local spectral subspace of T, then Weyl's theorem holds for T.