A NOTE ON WEYL'S THEOREM FOR *-PARANORMAL OPERATORS

An Hyun Kim

Abstract

In this note we investigate Weyl's theorem for $*$-paranormal operators on a separable infinite dimensional Hilbert space. We prove that if T is a *-paranormal operator satisfying Property $(\mathrm{E})-(T-\lambda I) H_{T}(\{\lambda\})$ is closed for each $\lambda \in \mathbb{C}$, where $H_{T}(\{\lambda\})$ is a local spectral subspace of T, then Weyl's theorem holds for T.

1. Introduction

Let H denote an infinite dimensional separable Hilbert space. Let $B(H)$ and $K(H)$ denote the algebra of bounded linear operators and the ideal of compact operators on H, respectively. If $T \in B(H)$ write $N(T)$ and $R(T)$ for the null space and range of $T ; \alpha(T):=\operatorname{dim} N(T) ; \beta(T):=\operatorname{dim} N\left(T^{*}\right) ; \sigma(T)$ for the spectrum of $T ; \sigma_{a p}(T)$ for the approximate point spectrum of $T ; \pi_{0}(T)$ for the set of eigenvalues of T.

An operator $T \in B(H)$ is called Fredholm if it has closed range with finite dimensional null space and its range of finite co-dimension. The index of a Fredholm operator $T \in B(H)$ is given by

$$
\operatorname{ind}(T):=\alpha(T)-\beta(T)
$$

An operator $T \in B(H)$ is called Weyl if it is Fredholm of index zero. An operator $T \in B(H)$ is called Browder if it is Fredholm "of finite ascent and descent": equivalently ([11, Theorem 7.9.3]) if T is Fredholm and $T-\lambda I$ is invertible for sufficiently small $\lambda \neq 0$ in \mathbb{C}. The essential spectrum $\sigma_{e}(T)$, the Weyl spectrum $\omega(T)$ and the Browder spectrum $\sigma_{b}(T)$ of $T \in B(H)$ are defined by ([10], [11], [12])

$$
\begin{aligned}
\sigma_{e}(T) & :=\{\lambda \in \mathbb{C}: T-\lambda I \text { is not Fredholm }\} ; \\
\omega(T) & :=\{\lambda \in \mathbb{C}: T-\lambda I \text { is not Weyl }\} ; \\
\sigma_{b}(T) & :=\{\lambda \in \mathbb{C}: T-\lambda I \text { is not Browder }\}:
\end{aligned}
$$

Received June 7, 2011.
2010 Mathematics Subject Classification. Primary 47A10, 47A11, 47A53.
Key words and phrases. Weyl's theorem, *-paranormal operators, Property (E).
This work was supported by the Korea Research Foundation(KRF) grant funded by the Korea government(MEST) (No.2010-0022158).
evidently,

$$
\sigma_{e}(T) \subseteq \omega(T) \subseteq \sigma_{b}(T)=\sigma_{e}(T) \cup \operatorname{acc} \sigma(T)
$$

where we write acc K for the accumulation points of $K \subseteq \mathbb{C}$.
If we write iso $K:=K \backslash \operatorname{acc} K$, then we let

$$
\pi_{00}(T):=\{\lambda \in \text { iso } \sigma(T): 0<\alpha(T-\lambda I)<\infty\}
$$

denote the set of isolated eigenvalues of finite multiplicity.
To say that "Weyl's theorem holds" for an operator $T \in B(H)$ is to claim that

$$
\begin{equation*}
\sigma(T) \backslash \omega(T)=\pi_{00}(T) \tag{1.1}
\end{equation*}
$$

in other words, the complement in the spectrum of the Weyl spectum is precisely the isolated points of the spectrum which are eigenvalues of finite multiplicity.
H. Weyl ([16]) has shown that the equality (1.1) holds for hermitian operators. Weyl's theorem has been extended from hermitian operators to hyponormal operators and to Toeplitz operators ([7]), and to several classes of operators including seminormal operators ([5], [6]).

An operator $T \in B(H)$ is said to be paranormal if

$$
\|T x\|^{2} \leq\left\|T^{2} x\right\| \quad \text { for every unit vector } x \in H
$$

and an operator $T \in B(H)$ is said to be $*$-paranormal if

$$
\left\|T^{*} x\right\|^{2} \leq\left\|T^{2} x\right\| \quad \text { for every unit vector } x \in H
$$

S. Prasanna ([14]) showed that Weyl's theorem holds for every paranormal operator. Evidently, every hyponormal operator T (i.e., $T^{*} T \geq T T^{*}$) is both paranormal and $*$-paranormal. The $*$-paranormality of operators has been studied in [3], [4] and others. It is known ([3]) that $T \in B(H)$ is *-paranormal if and only if

$$
\begin{equation*}
T^{* 2} T^{2}-2 \lambda T T^{*}+\lambda^{2} \geq 0 \quad \text { for each } \lambda>0 \tag{1.2}
\end{equation*}
$$

We emphasize that *-paranormality is independent of paranormality ([4, Examples 2.2 and 2.3]). We say ([2], [8], [13]) that $T \in B(H)$ has the single valued extension property if for every open set U of \mathbb{C} the only analytic solution $f: U \longrightarrow H$ of the equation

$$
(T-\lambda I) f(\lambda)=0
$$

for all $\lambda \in U$ is the zero function on U. Given an arbitrary operator $T \in B(H)$, the local resolvent set $\rho_{T}(x)$ of T at the point of $x \in H$ is defined as the union of all open subsets U of \mathbb{C} for which there is an analytic function $f: U \longrightarrow H$ which satisfies

$$
(T-\lambda I) f(\lambda)=x \quad \text { for all } \lambda \in U
$$

The local spectrum $\sigma_{T}(x)$ of T at x is then defined as

$$
\sigma_{T}(x):=\mathbb{C} \backslash \rho_{T}(x) .
$$

For an arbitrary operator $T \in B(H)$, we define the local spectral subspace of T as follows:

$$
H_{T}(F):=\left\{x \in H: \sigma_{T}(x) \subseteq F\right\} \quad \text { for each set } F \subseteq \mathbb{C} .
$$

In this note we examine Weyl's theorem for $*$-paranormal operators. Our main result is to prove that if T is a $*$-paranormal operator satisfying Property (E) $-(T-\lambda I) H_{T}(\{\lambda\})$ is closed for each $\lambda \in \mathbb{C}$, then Weyl's theorem holds for T.

2. The main result

We begin with:
Lemma 1 ([3, Theorem 1.1]). Every *-paranormal operator is normaloid, i.e., norm equals spectral radius.

Lemma_2 ([3, Lemma 2.1]). If $T \in B(H)$ is $*$-paranormal, then $N(T-\lambda I) \subseteq$ $N\left(T^{*}-\bar{\lambda} I\right)$ for each $\lambda \in \mathbb{C}$. Thus $T-\lambda I$ is reduced by its eigenspaces for each $\lambda \in \mathbb{C}$.

Definition 3. An operator $T \in B(H)$ is said to satisfy Property (E) if

$$
(T-\lambda I) H_{T}(\{\lambda\}) \text { is closed for each } \lambda \in \mathbb{C} .
$$

For example, every hyponormal operator satisfies Property (E). To see this, suppose $T \in B(H)$ is a hyponormal operator. Then we can see that

$$
H_{T}(\{\lambda\})=N(T-\lambda) .
$$

To see this we first observe that for each $\lambda \in \mathbb{C}$,

$$
\begin{equation*}
H_{T}(\{\lambda\})=\left\{x \in H: \lim _{n \rightarrow \infty}\left\|(T-\lambda I)^{n} x\right\|^{\frac{1}{n}}=0\right\} \tag{2.1}
\end{equation*}
$$

Since T is hyponormal, and hence normaloid, it follows that $\|(T-\lambda I) x\| \leq$ $\left\|(T-\lambda I)^{n} x\right\|^{\frac{1}{n}}$ for all $x \in H$ and $n \in \mathbb{N}$, which implies $H_{T}(\{\lambda\}) \subseteq N(T-\lambda I)$ and the converse is evident. Therefore $(T-\lambda I) H_{T}(\{\lambda\})=\{0\}$, which is closed.

Our main theorem is as follows:
Theorem 4. It $T \in B(H)$ is a*-paranormal operator satisfying Property (E), then Weyl's theorem holds for T.

Proof. Suppose $T \in B(H)$ is a $*$-paranormal operator satisfying Property (E). We first claim

$$
\begin{equation*}
T \text { is isoloid, } \tag{2.2}
\end{equation*}
$$

in the sense that every isolated points of $\sigma(T)$ is an eigenvalue of T. To see this we suppose λ is an isolated point of $\sigma(T)$. From Lemma 2, we can see that $T-\lambda I$ has finite ascent for each $\lambda \in \mathbb{C}$. Thus by ([13, Proposition 1.8]), T has the single valued extension property. Moreover, since by our assumption
$H_{T}(\{\lambda\})$ and $H_{T}(\mathbb{C} \backslash\{\lambda\})$ are both closed, it follows from [1, Theorems 2.18, 2.20 and 3.76] that H can be decomposed as:

$$
H=H_{T}(\{\lambda\}) \bigoplus H_{T}(\mathbb{C} \backslash\{\lambda\})
$$

In particular, we know (cf. [1, Theorem 2.6]) that

$$
(T-\lambda I) H_{T}(\{\lambda\}) \subseteq H_{T}(\{\lambda\}) \quad \text { and } \quad(T-\lambda I) H_{T}(\mathbb{C} \backslash\{\lambda\})=H_{T}(\mathbb{C} \backslash\{\lambda\})
$$

On the other hand, by (2.1), we have that $N(T-\lambda I) \subseteq H_{T}(\{\lambda\})$. Write

$$
H_{T}(\{\lambda\})=N(T-\lambda I) \bigoplus L \quad \text { for some closed subset } L
$$

Thus by the preceding argument, $T-\lambda I$ can be represented as follows:

$$
T-\lambda I=\left(\begin{array}{ccc}
0 & 0 & 0 \tag{2.3}\\
0 & A & 0 \\
0 & 0 & B
\end{array}\right):\left(\begin{array}{c}
N(T-\lambda I) \\
L \\
H_{T}(\mathbb{C} \backslash\{\lambda\})
\end{array}\right) \rightarrow\left(\begin{array}{c}
N(T-\lambda I) \\
L \\
H_{T}(\mathbb{C} \backslash\{\lambda\})
\end{array}\right) .
$$

Assume to the contrary that $N(T-\lambda I)=\{0\}$. Since by our assumption T satisfies Property (E), A has closed range. Since A is one-one it follows that A is bounded below, i.e., there exists a constant $c>0$ such that $\|A x\| \geq c\|x\|$ for each $x \in H$. Also since B is one-one and onto it follows that B is invertible. Consequently, from (2.3), we have that $T-\lambda I$ is bounded below. Hence $\lambda \notin$ $\sigma_{a p}(T)$ and hence, by the well-known fact, $\partial \sigma(T) \subseteq \sigma_{a p}(T)$, where $\partial \sigma(T)$ is the topological boundary of $\sigma(T)$, we can conclude that $\lambda \notin \partial \sigma(T)$, which contradicts our assumption $\lambda \in$ iso $\sigma(T)$. Thus $N(T-\lambda I) \neq\{0\}$, which proves (2.2).

We now suppose $\lambda \in \sigma(T) \backslash \omega(T)$. Thus $T-\lambda I$ is Weyl. Then by the Index Product Theorem,
$\operatorname{dim} N\left((T-\lambda I)^{n}\right)-\operatorname{dim} R\left((T-\lambda I)^{n}\right)^{\perp}=\operatorname{ind}\left((T-\lambda I)^{n}\right)=n \operatorname{ind}(T-\lambda I)=0$.
Since by Lemma 2, $T-\lambda I$ has finite ascent, $\operatorname{dim} N\left((T-\lambda I)^{n}\right)$ is a constant with respect to n, we have that $\operatorname{dim} R\left((T-\lambda I)^{n}\right)^{\perp}$ is a constant. Thus $T-\lambda I$ is Weyl of finite ascent and descent, and hence it is Browder. Therefore $\lambda \in \pi_{00}(T)$. Conversely, we suppose $\lambda \in \pi_{00}(T)$. By Lemma $2, T-\lambda I$ is reduced by its eigenspaces. Thus we can write

$$
T-\lambda I=\left(\begin{array}{cc}
0 & 0 \\
0 & S
\end{array}\right):\binom{N(T-\lambda I)}{N(T-\lambda I)^{\perp}} \rightarrow\binom{N(T-\lambda I)}{N(T-\lambda I)^{\perp}} .
$$

Thus

$$
T=\left(\begin{array}{cc}
\lambda I & 0 \\
0 & S+\lambda I
\end{array}\right) .
$$

We now claim that S is invertible. Assume to the contrary that S is not invertible. Then $0 \in$ iso $\sigma(S)$ since $\lambda \in$ iso $\sigma(T)$. Thus $\lambda \in$ iso $\sigma(S+\lambda I)$. But since $S+\lambda I$ is also a $*$-paranormal operator satisfying Property (E), it follows from (2.2) that λ is an eigenvalue of $S+\lambda I$. Thus $0 \in \pi_{0}(S)$. But this contradicts to the fact that S is one-one. Therefore S should be invertible.

Note that $N(T-\lambda I)$ is finite-dimensional. Thus evidently, $T-\lambda I$ is Weyl, so that $\lambda \in \sigma(T) \backslash \omega(T)$. This completes the proof.

In general, the spectral mapping theorem for the Weyl spectrum may fail. However, it was known ([9]) that for *-paranormal operators, Weyl spectrum obeys the spectral mapping theorem, i.e., if $T \in B(H)$ is *-paranormal, then

$$
\begin{equation*}
\omega(f(T))=f(\omega(T)) \quad \text { for every } f \in A(\sigma(T)) \tag{2.4}
\end{equation*}
$$

where $A(\sigma(T))$ denotes the set of all analytic functions on an open neighborhood of $\sigma(T)$.

We thus have:
Corollary 5. If $T \in B(H)$ is a *-paranormal operator satisfying Property (E), then for every $f \in A(\sigma(T))$, Weyl's theorem holds for $f(T)$.
Proof. By Theorem 4, Weyl's theorem holds for every *-paranormal operator satisfying Property (E). Remembering ([12]) that if T is isoloid, then

$$
f\left(\sigma(T) \backslash \pi_{00}(T)\right)=\sigma(f(T)) \backslash \pi_{00}(f(T)) \quad \text { for every } f \in A(\sigma(T))
$$

it follows from (2.2) and (2.4) that

$$
\sigma(f(T)) \backslash \pi_{00}(f(T))=f\left(\sigma(T) \backslash \pi_{00}(T)\right)=f(\omega(T))=\omega(f(T))
$$

which implies that Weyl's theorem holds for $f(T)$.
We conclude with an interesting structure theorem for *-paranormal operators.

Theorem 6. If $T \in B(H)$ is $*$-paranormal and Riesz (i.e., $\sigma_{e}(T)=\{0\}$), then T is compact and normal.
Proof. Suppose T is *-paranormal. Then by (1.2), $T^{* 2} T^{2}-2 \lambda T T^{*}+\lambda^{2} \geq 0$ for each $\lambda>0$. Write π for the Calkin homomorphism from $B(H)$ to the Calkin algebra $B(H) / K(H)$. Then $0 \leq \pi\left(T^{* 2} T^{2}-2 \lambda T T^{*}+\lambda^{2}\right)=\pi(T)^{* 2} \pi(T)^{2}-$ $2 \lambda \pi(T) \pi(T)^{*}+\lambda^{2}$, which shows that $\pi(T)$ is $*$-paranormal and hence by Lemma 1 , it is normaloid. If T is Riesz, then by the West Decomposition Theorem ([15]), we can write

$$
T=K+Q, \quad \text { where } K \text { is compact and } Q \text { is quasinilpotent. }
$$

Since $\pi(T)=\pi(Q)$, and hence $\sigma(\pi(T))=\sigma(\pi(Q))=\sigma_{e}(Q)=\{0\}$, we have that $\pi(T)$ is quasinilpotent. Therefore $\|\pi(T)\|=r(\pi(T))=0$, and hence $\pi(T)=0$. Therefore T is compact. For the normality of T, observe that by Lemma 2,

$$
\mathfrak{M}:=\bigoplus_{\lambda \in \sigma(T)} N(T-\lambda I)
$$

reduces T. Thus we can write

$$
T=\left(\begin{array}{cc}
T_{1} & 0 \\
0 & T_{2}
\end{array}\right): \mathfrak{M} \oplus \mathfrak{M}^{\perp} \rightarrow \mathfrak{M} \oplus \mathfrak{M}^{\perp}
$$

Note that T_{1} is normal. If $\mathfrak{M}^{\perp}=\{0\}$, then evidently T is normal. Thus we assume that $\mathfrak{M}^{\perp} \neq\{0\}$. We now claim that $T_{2}=0$. Assume to the contrary that $T_{2} \neq 0$. Since T_{2} is $*$-paranormal, and hence normaloid, we can find $\gamma \in \sigma\left(T_{2}\right)$ such that $\left\|T_{2}\right\|=|\gamma|$. But since T is compact and $\gamma \neq 0$, we have that $\gamma \in \pi_{0}(T)$, which contradicts to the construction of \mathfrak{M}. Therefore $T_{2}=0$, and therefore we can conclude that T is normal.

References

[1] P. Aiena, Fredholm and Local Spectral Theory, with Applications to Multipliers, Kluwer Academic Publ., London, 2004.
[2] P. Aiena and O. Monsalve, Operators which do not have the single valued extension property, J. Math. Anal. Appl. 250 (2000), no. 2, 435-448.
[3] S. C. Arora and J. K. Thukral, On a class of operators, Glas. Mat. Ser. III 21(41) (1986), no. 2, 381-386.
[4] , M^{*}-paranormal operators, Glas. Mat. Ser. III 22(42) (1987), no. 1, 123-129.
[5] S. K. Berberian, An extension of Weyl's theorem to a class of not necessarily normal operators, Michigan Math. J. 16 (1969), 273-279.
[6] , The Weyl spectrum of an operator, Indiana Univ. Math. J. 20 (1970), 529-544.
[7] L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285-288.
[8] J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), no. 1, 61-69.
[9] Y. M. Han and A.-H. Kim, A note on *-paranormal operators, Integral Equations Operator Theory 49 (2004), no. 4, 435-444.
[10] R. E. Harte, Fredholm, Weyl and Browder theory, Proc. Roy. Irish Acad. Sect. A 85 (1985), no. 2, 151-176.
[11] , Invertibility and Singularity for Bounded Linear Operators, Dekker, New York, 1988.
[12] R. E. Harte and W. Y. Lee, Another note on Weyl's theorem, Trans. Amer. Math. Soc. 349 (1997), no. 5, 2115-2124.
[13] K. B. Laursen, Operators with finite ascent, Pacific J. Math. 152 (1992), no. 2, 323-336.
[14] S. Prasanna, Weyl's theorem and thin spectra, Proc. Indian Acad. Sci. Math. Sci. 91 (1982), no. 1, 59-63.
[15] T. T. West, The decomposition of Riesz operators, Proc. London Math. Soc. 16 (1966), 737-752.
[16] H. Weyl, Uber beschränkte quadratische Formen, deren Differenz vollsteig ist, Rend. Circ. Mat. Palermo 27 (1909), 373-392.

Department of Mathematics
Changwon National University
Changwon 641-773, Korea
E-mail address: ahkim@changwon.ac.kr

