
Commun. Korean Math. Soc. 27 (2012), No. 3, pp. 565–570
http://dx.doi.org/10.4134/CKMS.2012.27.3.565

A NOTE ON WEYL’S THEOREM FOR ∗-PARANORMAL

OPERATORS

An Hyun Kim

Abstract. In this note we investigate Weyl’s theorem for ∗-paranormal
operators on a separable infinite dimensional Hilbert space. We prove that
if T is a ∗-paranormal operator satisfying Property (E) - (T−λI)HT ({λ})
is closed for each λ ∈ C, where HT ({λ}) is a local spectral subspace of
T , then Weyl’s theorem holds for T .

1. Introduction

Let H denote an infinite dimensional separable Hilbert space. Let B(H) and
K(H) denote the algebra of bounded linear operators and the ideal of compact
operators on H , respectively. If T ∈ B(H) write N(T ) and R(T ) for the null
space and range of T ; α(T ) := dimN(T ); β(T ) := dimN(T ∗); σ(T ) for the
spectrum of T ; σap(T ) for the approximate point spectrum of T ; π0(T ) for the
set of eigenvalues of T .

An operator T ∈ B(H) is called Fredholm if it has closed range with finite
dimensional null space and its range of finite co-dimension. The index of a
Fredholm operator T ∈ B(H) is given by

ind (T ) := α(T )− β(T ).

An operator T ∈ B(H) is called Weyl if it is Fredholm of index zero. An
operator T ∈ B(H) is called Browder if it is Fredholm “of finite ascent and
descent”: equivalently ([11, Theorem 7.9.3]) if T is Fredholm and T − λI is
invertible for sufficiently small λ 6= 0 in C. The essential spectrum σe(T ), the
Weyl spectrum ω(T ) and the Browder spectrum σb(T ) of T ∈ B(H) are defined
by ([10], [11], [12])

σe(T ) := {λ ∈ C : T − λI is not Fredholm};

ω(T ) := {λ ∈ C : T − λI is not Weyl};

σb(T ) := {λ ∈ C : T − λI is not Browder} :
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evidently,

σe(T ) ⊆ ω(T ) ⊆ σb(T ) = σe(T ) ∪ accσ(T ),

where we write acc K for the accumulation points of K ⊆ C.
If we write iso K := K \ acc K, then we let

π00(T ) := {λ ∈ iso σ(T ) : 0 < α(T − λI) < ∞}

denote the set of isolated eigenvalues of finite multiplicity.
To say that “Weyl’s theorem holds” for an operator T ∈ B(H) is to claim

that

(1.1) σ(T ) \ ω(T ) = π00(T ),

in other words, the complement in the spectrum of the Weyl spectum is pre-
cisely the isolated points of the spectrum which are eigenvalues of finite multi-
plicity.

H. Weyl ([16]) has shown that the equality (1.1) holds for hermitian op-
erators. Weyl’s theorem has been extended from hermitian operators to hy-
ponormal operators and to Toeplitz operators ([7]), and to several classes of
operators including seminormal operators ([5], [6]).

An operator T ∈ B(H) is said to be paranormal if

||Tx||2 ≤ ||T 2x|| for every unit vector x ∈ H,

and an operator T ∈ B(H) is said to be ∗-paranormal if

||T ∗x||2 ≤ ||T 2x|| for every unit vector x ∈ H.

S. Prasanna ([14]) showed that Weyl’s theorem holds for every paranormal
operator. Evidently, every hyponormal operator T (i.e., T ∗T ≥ TT ∗) is both
paranormal and ∗-paranormal. The ∗-paranormality of operators has been
studied in [3], [4] and others. It is known ([3]) that T ∈ B(H) is ∗-paranormal
if and only if

(1.2) T ∗2T 2 − 2λTT ∗ + λ2 ≥ 0 for each λ > 0.

We emphasize that ∗-paranormality is independent of paranormality ([4, Ex-
amples 2.2 and 2.3]). We say ([2], [8], [13]) that T ∈ B(H) has the single

valued extension property if for every open set U of C the only analytic solution
f : U −→ H of the equation

(T − λI)f(λ) = 0

for all λ ∈ U is the zero function on U . Given an arbitrary operator T ∈ B(H),
the local resolvent set ρT (x) of T at the point of x ∈ H is defined as the union
of all open subsets U of C for which there is an analytic function f : U −→ H
which satisfies

(T − λI)f(λ) = x for all λ ∈ U.

The local spectrum σT (x) of T at x is then defined as

σT (x) := C \ ρT (x).
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For an arbitrary operator T ∈ B(H), we define the local spectral subspace of T
as follows:

HT (F ) := {x ∈ H : σT (x) ⊆ F} for each set F ⊆ C.

In this note we examine Weyl’s theorem for ∗-paranormal operators. Our
main result is to prove that if T is a ∗-paranormal operator satisfying Property
(E) - (T − λI)HT ({λ}) is closed for each λ ∈ C, then Weyl’s theorem holds for
T .

2. The main result

We begin with:

Lemma 1 ([3, Theorem 1.1]). Every ∗-paranormal operator is normaloid, i.e.,

norm equals spectral radius.

Lemma 2 ([3, Lemma 2.1]). If T ∈ B(H) is ∗-paranormal, then N(T −λI) ⊆
N(T ∗− λ̄I) for each λ ∈ C. Thus T −λI is reduced by its eigenspaces for each

λ ∈ C.

Definition 3. An operator T ∈ B(H) is said to satisfy Property (E) if

(T − λI)HT ({λ}) is closed for each λ ∈ C.

For example, every hyponormal operator satisfies Property (E). To see this,
suppose T ∈ B(H) is a hyponormal operator. Then we can see that

HT ({λ}) = N(T − λ).

To see this we first observe that for each λ ∈ C,

(2.1) HT ({λ}) =
{

x ∈ H : lim
n→∞

||(T − λI)nx||
1

n = 0
}

.

Since T is hyponormal, and hence normaloid, it follows that ||(T − λI)x|| ≤

||(T − λI)nx||
1

n for all x ∈ H and n ∈ N, which implies HT ({λ}) ⊆ N(T − λI)
and the converse is evident. Therefore (T −λI)HT ({λ}) = {0}, which is closed.

Our main theorem is as follows:

Theorem 4. It T ∈ B(H) is a ∗-paranormal operator satisfying Property (E),
then Weyl’s theorem holds for T .

Proof. Suppose T ∈ B(H) is a ∗-paranormal operator satisfying Property (E).
We first claim

(2.2) T is isoloid,

in the sense that every isolated points of σ(T ) is an eigenvalue of T . To see
this we suppose λ is an isolated point of σ(T ). From Lemma 2, we can see that
T − λI has finite ascent for each λ ∈ C. Thus by ([13, Proposition 1.8]), T
has the single valued extension property. Moreover, since by our assumption
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HT ({λ}) and HT (C \ {λ}) are both closed, it follows from [1, Theorems 2.18,
2.20 and 3.76] that H can be decomposed as:

H = HT ({λ})
⊕

HT (C \ {λ}).

In particular, we know (cf. [1, Theorem 2.6]) that

(T − λI)HT ({λ}) ⊆ HT ({λ}) and (T − λI)HT (C \ {λ}) = HT (C \ {λ}).

On the other hand, by (2.1), we have that N(T − λI) ⊆ HT ({λ}). Write

HT ({λ}) = N(T − λI)
⊕

L for some closed subset L.

Thus by the preceding argument, T − λI can be represented as follows:

(2.3) T − λI =





0 0 0
0 A 0
0 0 B



 :





N(T − λI)
L

HT (C \ {λ})



 →





N(T − λI)
L

HT (C \ {λ})



 .

Assume to the contrary that N(T − λI) = {0}. Since by our assumption T
satisfies Property (E), A has closed range. Since A is one-one it follows that A
is bounded below, i.e., there exists a constant c > 0 such that ||Ax|| ≥ c||x|| for
each x ∈ H . Also since B is one-one and onto it follows that B is invertible.
Consequently, from (2.3), we have that T − λI is bounded below. Hence λ /∈
σap(T ) and hence, by the well-known fact, ∂ σ(T ) ⊆ σap(T ), where ∂σ(T ) is
the topological boundary of σ(T ), we can conclude that λ /∈ ∂ σ(T ), which
contradicts our assumption λ ∈ isoσ(T ). Thus N(T −λI) 6= {0}, which proves
(2.2).

We now suppose λ ∈ σ(T ) \ω(T ). Thus T − λI is Weyl. Then by the Index
Product Theorem,

dimN((T −λI)n)−dimR((T −λI)n)⊥ = ind ((T −λI)n) = n ind (T −λI) = 0.

Since by Lemma 2, T−λI has finite ascent, dimN((T−λI)n) is a constant with
respect to n, we have that dimR((T−λI)n)⊥ is a constant. Thus T−λI is Weyl
of finite ascent and descent, and hence it is Browder. Therefore λ ∈ π00(T ).
Conversely, we suppose λ ∈ π00(T ). By Lemma 2, T − λI is reduced by its
eigenspaces. Thus we can write

T − λI =

(

0 0
0 S

)

:

(

N(T − λI)
N(T − λI)⊥

)

→

(

N(T − λI)
N(T − λI)⊥

)

.

Thus

T =

(

λI 0
0 S + λI

)

.

We now claim that S is invertible. Assume to the contrary that S is not
invertible. Then 0 ∈ isoσ(S) since λ ∈ isoσ(T ). Thus λ ∈ isoσ(S + λI).
But since S + λI is also a ∗-paranormal operator satisfying Property (E), it
follows from (2.2) that λ is an eigenvalue of S + λI. Thus 0 ∈ π0(S). But
this contradicts to the fact that S is one-one. Therefore S should be invertible.
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Note that N(T − λI) is finite-dimensional. Thus evidently, T − λI is Weyl, so
that λ ∈ σ(T ) \ ω(T ). This completes the proof. �

In general, the spectral mapping theorem for the Weyl spectrum may fail.
However, it was known ([9]) that for ∗-paranormal operators, Weyl spectrum
obeys the spectral mapping theorem, i.e., if T ∈ B(H) is ∗-paranormal, then

(2.4) ω(f(T )) = f(ω(T )) for every f ∈ A(σ(T )),

where A(σ(T )) denotes the set of all analytic functions on an open neighbor-
hood of σ(T ).

We thus have:

Corollary 5. If T ∈ B(H) is a ∗-paranormal operator satisfying Property (E),
then for every f ∈ A(σ(T )), Weyl’s theorem holds for f(T ).

Proof. By Theorem 4, Weyl’s theorem holds for every ∗-paranormal operator
satisfying Property (E). Remembering ([12]) that if T is isoloid, then

f
(

σ(T ) \ π00(T )
)

= σ(f(T )) \ π00(f(T )) for every f ∈ A(σ(T )),

it follows from (2.2) and (2.4) that

σ(f(T )) \ π00(f(T )) = f
(

σ(T ) \ π00(T )
)

= f(ω(T )) = ω(f(T )),

which implies that Weyl’s theorem holds for f(T ). �

We conclude with an interesting structure theorem for ∗-paranormal opera-
tors.

Theorem 6. If T ∈ B(H) is ∗-paranormal and Riesz (i.e., σe(T ) = {0}), then
T is compact and normal.

Proof. Suppose T is ∗-paranormal. Then by (1.2), T ∗2T 2−2λTT ∗+λ2 ≥ 0 for
each λ > 0. Write π for the Calkin homomorphism from B(H) to the Calkin
algebra B(H)/K(H). Then 0 ≤ π

(

T ∗2T 2 − 2λTT ∗ + λ2
)

= π(T )∗2π(T )2 −

2λπ(T )π(T )∗+λ2, which shows that π(T ) is ∗-paranormal and hence by Lemma
1, it is normaloid. If T is Riesz, then by the West Decomposition Theorem
([15]), we can write

T = K +Q, where K is compact and Q is quasinilpotent.

Since π(T ) = π(Q), and hence σ(π(T )) = σ(π(Q)) = σe(Q) = {0}, we have
that π(T ) is quasinilpotent. Therefore ||π(T )|| = r(π(T )) = 0, and hence
π(T ) = 0. Therefore T is compact. For the normality of T , observe that by
Lemma 2,

M :=
⊕

λ∈σ(T )

N(T − λI)

reduces T . Thus we can write

T =

(

T1 0
0 T2

)

: M⊕M
⊥ → M⊕M

⊥.
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Note that T1 is normal. If M⊥ = {0}, then evidently T is normal. Thus we
assume that M

⊥ 6= {0}. We now claim that T2 = 0. Assume to the contrary
that T2 6= 0. Since T2 is ∗-paranormal, and hence normaloid, we can find
γ ∈ σ(T2) such that ||T2|| = |γ|. But since T is compact and γ 6= 0, we have
that γ ∈ π0(T ), which contradicts to the construction of M. Therefore T2 = 0,
and therefore we can conclude that T is normal. �
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