• 제목/요약/키워드: spectral set

검색결과 348건 처리시간 0.024초

Multi-Relay Cooperative Diversity Protocol with Improved Spectral Efficiency

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun
    • Journal of Communications and Networks
    • /
    • 제13권3호
    • /
    • pp.240-249
    • /
    • 2011
  • Cooperative diversity protocols have attracted a great deal of attention since they are thought to be capable of providing diversity multiplexing tradeoff among single antenna wireless devices. In the high signal-to-noise ratio (SNR) region, cooperation is rarely required; hence, the spectral efficiency of the cooperative protocol can be improved by applying a proper cooperation selection technique. In this paper, we present a simple "cooperation selection" technique based on instantaneous channel measurement to improve the spectral efficiency of cooperative protocols. We show that the same instantaneous channel measurement can also be used for relay selection. In this paper two protocols are proposed-proactive and reactive; the selection of one of these protocols depends on whether the decision of cooperation selection is made before or after the transmission of the source. These protocols can successfully select cooperation along with the best relay from a set of available M relays. If the instantaneous source-to-destination channel is strong enough to support the system requirements, then the source simply transmits to the destination as a noncooperative direct transmission; otherwise, a cooperative transmission with the help of the selected best relay is chosen by the system. Analysis and simulation results show that these protocols can achieve higher order diversity with improved spectral efficiency, i.e., a higher diversity-multiplexing tradeoff in a slow-fading environment.

Classifying Forest Species Using Hyperspectral Data in Balah Forest Reserve, Kelantan, Peninsular Malaysia

  • Zain, Ruhasmizan Mat;Ismail, Mohd Hasmadi;Zaki, Pakhriazad Hassan
    • Journal of Forest and Environmental Science
    • /
    • 제29권2호
    • /
    • pp.131-137
    • /
    • 2013
  • This study attempts to classify forest species using hyperspectral data for supporting resources management. The primary dataset used was AISA sensor. The sensor was mounted onboard the NOMAD GAF-27 aircraft at 2,000 m altitude creating a 2 m spatial resolution on the ground. Pre-processing was carried out with CALIGEO software, which automatically corrects for both geometric and radiometric distortions of the raw image data. The radiance data set was then converted to at-sensor reflectance derived from the FODIS sensor. Spectral Angle Mapper (SAM) technique was used for image classification. The spectra libraries for tree species were established after confirming the appropriate match between field spectra and pixel spectra. Results showed that the highest spectral signature in NIR range were Kembang Semangkok (Scaphium macropodum), followed by Meranti Sarang Punai (Shorea parvifolia) and Chengal (Neobalanocarpus hemii). Meanwhile, the lowest spectral response were Kasai (Pometia pinnata), Kelat (Eugenia spp.) and Merawan (Hopea beccariana), respectively. The overall accuracy obtained was 79%. Although the accuracy of SAM techniques is below the expectation level, SAM classifier was able to classify tropical tree species. In future it is believe that the most effective way of ground data collection is to use the ground object that has the strongest response to sensor for more significant tree signatures.

Pitch 히스토그램을 이용한 내용기반 음악 정보 검색 (Content-based Music Information Retrieval using Pitch Histogram)

  • 박만수;박철의;김회린;강경옥
    • 방송공학회논문지
    • /
    • 제9권1호
    • /
    • pp.2-7
    • /
    • 2004
  • 본 논문에서는 내용 기반 음악 정보 검색에 MPEG-7에 정의된 오디오 서술자를 적용하는 방법을 제안한다. 특히 Pitch 정보와 timbral 특징들은 음색 구분을 용이하게 할 수 있어 음악 검색뿐만 아니라 음악 장르 분류 또는 QBH(Query By Humming)에 이용 될 수 있다. 이러한 방법을 통하여 오디오 신호의 대표적인 특성을 표현 할 수 있는 특징벡터를 구성 할 수 있다면 추후에 멀티모달 시스템을 이용한 검색 알고리즘에도 오디오 특징으로 이용 될 수 있을 것이다. 본 논문에서는 방송 시스템에 적용하기 위해 영화나 드라마의 배경음악에 해당하는 O.S.T 앨범으로 검색 범위를 제한하였다. 즉, 사용자가 임의로 검색을 요청한 시점에서 비디오 컨텐츠로부터 추출한 임의의 오디오 클립만을 이용하여 그 컨텐츠 전체의 O.S.T 앨범 내에서 음악을 검색할 수 있도록 하였다. 오디오 특징 백터를 구성하기 위해 필요한 MPEG-7 오디오 서술자의 조합 방법을 제안하고 distance 또는 ratio 계산 방식을 통해 성능 향상을 추구하였다. 또한 reference 음악의 템플릿 구성 방식의 변화를 통해 성능 향상을 추구하였다. Classifier로 k-NN 방식을 사용하여 성능평가를 수행한 결과 timbral spectral feature 보다는 pitch 정보를 이용한 특징이 우수한 성능을 보였고 vector distance 방식으로는 특징들의 비율을 이용한 IFCR(Intra-Feature Component Ratio) 방식이 ED(Euclidean Distance) 방식보다 우수한 성능을 보였다.

Multiview-based Spectral Weighted and Low-Rank for Row-sparsity Hyperspectral Unmixing

  • Zhang, Shuaiyang;Hua, Wenshen;Liu, Jie;Li, Gang;Wang, Qianghui
    • Current Optics and Photonics
    • /
    • 제5권4호
    • /
    • pp.431-443
    • /
    • 2021
  • Sparse unmixing has been proven to be an effective method for hyperspectral unmixing. Hyperspectral images contain rich spectral and spatial information. The means to make full use of spectral information, spatial information, and enhanced sparsity constraints are the main research directions to improve the accuracy of sparse unmixing. However, many algorithms only focus on one or two of these factors, because it is difficult to construct an unmixing model that considers all three factors. To address this issue, a novel algorithm called multiview-based spectral weighted and low-rank row-sparsity unmixing is proposed. A multiview data set is generated through spectral partitioning, and then spectral weighting is imposed on it to exploit the abundant spectral information. The row-sparsity approach, which controls the sparsity by the l2,0 norm, outperforms the single-sparsity approach in many scenarios. Many algorithms use convex relaxation methods to solve the l2,0 norm to avoid the NP-hard problem, but this will reduce sparsity and unmixing accuracy. In this paper, a row-hard-threshold function is introduced to solve the l2,0 norm directly, which guarantees the sparsity of the results. The high spatial correlation of hyperspectral images is associated with low column rank; therefore, the low-rank constraint is adopted to utilize spatial information. Experiments with simulated and real data prove that the proposed algorithm can obtain better unmixing results.

Mastitis Diagnostics by Near-infrared Spectra of Cows milk, Blood and Urine Using SIMCA Classification

  • Tsenkova, Roumiana;Atanassova, Stefka
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1247-1247
    • /
    • 2001
  • Constituents of animal biofluids such as milk, blood and urine contain information specifically related to metabolic and health status of the ruminant animals. Some changes in composition of biofluids can be attributed to disease response of the animals. Mastitis is a major problem for the global dairy industry and causes substantial economic losses from decreasing milk production and reducing milk quality. The purpose of this study was to investigate potential of NIRS combined with multivariate analysis for cow's mastitis diagnosis based on NIR spectra of milk, blood and urine. A total of 112 bulk milk, urine and blood samples from 4 Holstein cows were analyzed. The milk samples were collected from morning milking. The urine samples were collected before morning milking and stored at -35$^{\circ}C$ until spectral analysis. The blood samples were collected before morning milking using a catheter inserted into the carotid vein. Heparin was added to blood samples to prevent coagulation. All milk samples were analyzed for somatic cell count (SCC). The SCC content in milk was used as indicator of mastitis and as quantitative parameter for respective urine and blood samples collected at same time. NIR spectra of blood and milk samples were obtained by InfraAlyzer 500 spectrophotometer, using a transflectance mode. NIR spectra of urine samples were obtained by NIR System 6500 spectrophotometer, using 1 mm sample thickness. All samples were divided into calibration set and test set. Class variable was assigned for each sample as follow: healthy (class 1) and mastitic (class 2), based on milk SCC content. SIMCA was implemented to create models of the respective classes based on NIR spectra of milk, blood or urine. For the calibration set of samples, SIMCA models (model for samples from healthy cows and model for samples from mastitic cows), correctly classified from 97.33 to 98.67% of milk samples, from 97.33 to 98.61% of urine samples and from 96.00 to 94.67% of blood samples. From samples in the test set, the percent of correctly classified samples varied from 70.27 to 89.19, depending mainly on spectral data pretreatment. The best results for all data sets were obtained when first derivative spectral data pretreatment was used. The incorrect classified samples were 5 from milk samples,5 and 4 from urine and blood samples, respectively. The analysis of changes in the loading of first PC factor for group of samples from healthy cows and group of samples from mastitic cows showed, that separation between classes was indirect and based on influence of mastitis on the milk, blood and urine components. Results from the present investigation showed that the changes that occur when a cow gets mastitis influence her milk, urine and blood spectra in a specific way. SIMCA allowed extraction of available spectral information from the milk, urine and blood spectra connected with mastitis. The obtained results could be used for development of a new method for mastitis detection.

  • PDF

Speech Recognition in Car Noise Environments Using Multiple Models Based on a Hybrid Method of Spectral Subtraction and Residual Noise Masking

  • Song, Myung-Gyu;Jung, Hoi-In;Shim, Kab-Jong;Kim, Hyung-Soon
    • The Journal of the Acoustical Society of Korea
    • /
    • 제18권3E호
    • /
    • pp.3-8
    • /
    • 1999
  • In speech recognition for real-world applications, the performance degradation due to the mismatch introduced between training and testing environments should be overcome. In this paper, to reduce this mismatch, we provide a hybrid method of spectral subtraction and residual noise masking. We also employ multiple model approach to obtain improved robustness over various noise environments. In this approach, multiple model sets are made according to several noise masking levels and then a model set appropriate for the estimated noise level is selected automatically in recognition phase. According to speaker independent isolated word recognition experiments in car noise environments, the proposed method using model sets with only two masking levels reduced average word error rate by 60% in comparison with spectral subtraction method.

  • PDF

ON IMPROVING THE PERFORMANCE OF CODED SPECTRAL PARAMETERS FOR SPEECH RECOGNITION

  • Choi, Seung-Ho;Kim, Hong-Kook;Lee, Hwang-Soo
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 제15회 음성통신 및 신호처리 워크샵(KSCSP 98 15권1호)
    • /
    • pp.250-253
    • /
    • 1998
  • In digital communicatioin networks, speech recognition systems conventionally reconstruct speech followed by extracting feature [parameters. In this paper, we consider a useful approach by incorporating speech coding parameters into the speech recognizer. Most speech coders employed in the networks represent line spectral pairs as spectral parameters. In order to improve the recognition performance of the LSP-based speech recognizer, we introduce two different ways: one is to devise weighed distance measures of LSPs and the other is to transform LSPs into a new feature set, named a pseudo-cepstrum. Experiments on speaker-independent connected-digit recognition showed that the weighted distance measures significantly improved the recognition accuracy than the unweighted one of LSPs. Especially we could obtain more improved performance by using PCEP. Compared to the conventional methods employing mel-frequency cepstral coefficients, the proposed methods achieved higher performance in recognition accuracies.

  • PDF

스펙트럴요소법을 이용한 내부유동 포함된 파이프 진도해석 (Spectral Element Analysis of the Pipeline Conveying Internal Flow)

  • 강관호;이우식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.207-212
    • /
    • 2001
  • This paper considers a pipeline conveying one-dimensional unsteady flow inside. The dynamics of the fluid-pipe system is represented by two coupled equations of motion for the transverse and axial displacements, which are linearized from a set of partial differential equations which consists of the axial and transverse equations of motion of the pipeline and the equations of momentum and continuity of the internal flow. Because of the complex nature of fluid-pipe interactive mechanism, a very accurate solution method is required to get sufficiently accurate dynamic characteristics of the pipeline. In the literatures, the finite element models have been popularly used for the problems. However, it has been well recognized that finite element method (FEM) may provide poor solutions especially at high frequency. Thus, in this paper, a spectral element model is developed for the pipeline and its accuracy is evaluated by comparing with the solutions by FEM.

  • PDF

EXPANDING MEASURES FOR HOMEOMORPHISMS WITH EVENTUALLY SHADOWING PROPERTY

  • Dong, Meihua;Lee, Keonhee;Nguyen, Ngocthach
    • 대한수학회지
    • /
    • 제57권4호
    • /
    • pp.935-955
    • /
    • 2020
  • In this paper we present a measurable version of the Smale's spectral decomposition theorem for homeomorphisms on compact metric spaces. More precisely, we prove that if a homeomorphism f on a compact metric space X is invariantly measure expanding on its chain recurrent set CR(f) and has the eventually shadowing property on CR(f), then f has the spectral decomposition. Moreover we show that f is invariantly measure expanding on X if and only if its restriction on CR(f) is invariantly measure expanding. Using this, we characterize the measure expanding diffeomorphisms on compact smooth manifolds via the notion of Ω-stability.

Seismic spectral acceleration assessment of masonry in-filled reinforced concrete buildings by a coefficient-based method

  • Su, R.K.L.;Lee, C.L.;Wang, Y.P.
    • Structural Engineering and Mechanics
    • /
    • 제41권4호
    • /
    • pp.479-494
    • /
    • 2012
  • This study explores a coefficient-based seismic capacity assessment method with a special emphasis on low-rise masonry in-filled (MI) reinforced concrete (RC) buildings subjected to earthquake motion. The coefficient-based method without requiring any complicated finite element analysis is a simplified procedure to assess the maximum spectral acceleration capacity of buildings. This paper first compares the fundamental periods of MI RC structures obtained, respectively, from experimental period data and empirical period-height formulas. The coefficient-based method for low-rise masonry buildings is then calibrated by the published experimental results obtained from shaking table tests. The comparison of the experimental and estimated results indicates that the simplified coefficient-based method can provide good approximations of the maximum spectral accelerations at peak loads of the low-rise masonry reinforced concrete buildings if a proper set of drift factors and initial fundamental vibration periods of structures are used.