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EXPANDING MEASURES FOR HOMEOMORPHISMS WITH

EVENTUALLY SHADOWING PROPERTY

Meihua Dong, Keonhee Lee, and Ngocthach Nguyen

Abstract. In this paper we present a measurable version of the Smale’s

spectral decomposition theorem for homeomorphisms on compact metric
spaces. More precisely, we prove that if a homeomorphism f on a compact

metric space X is invariantly measure expanding on its chain recurrent
set CR(f) and has the eventually shadowing property on CR(f), then

f has the spectral decomposition. Moreover we show that f is invari-

antly measure expanding on X if and only if its restriction on CR(f) is
invariantly measure expanding. Using this, we characterize the measure

expanding diffeomorphisms on compact smooth manifolds via the notion

of Ω-stability.

1. Introduction

Let f be a homeomorphism on a compact metric space X. For given δ > 0,
the dynamical δ-ball centered at x ∈ X is defined by

Γfδ (x) = {y ∈ X | d(fn(x), fn(y)) ≤ δ for all n ∈ Z}.

We say that a homeomorphism f is expansive if there is δ > 0 such that

Γfδ (x) = {x} for all x ∈ X. Such constant δ is called an expansive constant of
f . The notion of expansiveness has played an important role in the qualitative
study of dynamical systems.

Another extension of expansiveness for a homeomorphism f was introduced
by Morales and Sirvent [10] using the properties of Borel measures on X. A
Borel probability measure µ on X is said to be expansive for f if there is

δ > 0 such that µ(Γfδ (x)) = 0 for any x ∈ X. It is clear that if µ is expansive
for f , then µ is non-atomic, i.e., µ({x}) = 0 for all x ∈ X. We say that a
homeomorphism f is measure expansive if every non-atomic Borel probability
measure on X is expansive for f . Clearly every expansive homeomorphism f
is measure expansive, but the converse is not true in general.
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Recently, Cordeiro et al. [5] introduced another notion of expansiveness for
Borel measures called strong expansiveness: a Borel probability measure µ on

X is said to be strongly expansive for f if there is δ > 0 such that µ(Γfδ (x))
= µ({x}) for all x ∈ X. We say that a homeomorphism f is strongly measure
expansive if every Borel probability measure µ is strongly expansive for f . Note
that if f is strongly measure expansive, then it is measure expansive, but the
converse is not true in general.

The Smale’s spectral decomposition theorem [12] says that any Axiom A
diffeomorphism f on a compact smooth manifold admits the spectral decom-
position; i.e., the nonwandering set Ω(f) can be written by a finite union of
disjoint compact invariant sets on which f is topologically transitive. After-
ward, there are many works that generalize the Smale’s spectral decomposition
theorem to general settings (e.g., see [5], [6], [9]). The first topological version
of Smale’s spectral decomposition theorem for homeomorphisms on compact
metric spaces was done by Aoki [1]. He claimed that if a homeomorphism f
is expansive on its nonwandering set Ω(f) and has the shadowing property on
Ω(f), then f has the spectral decomposition.

In this paper we introduce another notion of expansiveness for homeomor-
phisms using the Borel measures on X called expanding measures, and prove
that any measure expanding homeomorphisms with the eventually shadowing
property admits the spectral decomposition. It is clear that the shadowing
property implies the eventually shadowing property, and any strongly measure
expansive homeomorphism is measure expanding. We note here that measure
expansive homeomorphisms with the shadowing property do not admit the
spectral decomposition in general as we see in Section 4.

In Section 2, we characterize the measure expanding homeomorphisms on
compact metric spaces by using the notion of geometrical expansiveness. We
also introduce the notion of eventually shadowing property for homeomor-
phisms which is general than that of the shadowing property, and show that
if a homeomorphism f has the eventually shadowing property on its chain re-
current set CR(f), then its restriction on its nonwandering set Ω(f) has the
shadowing property.

In Section 3, we show that if a homeomorphism f is invariantly measure
expanding on its chain recurrent set CR(f), then it is invariantly measure
expanding on X. Moreover we construct a homeomorphism which is invari-
antly measure expanding on its nonwandering set but not invariantly measure
expanding on X.

In Section 4, we show that if a homeomorphism f is invariantly measure
expanding on its chain recurrent set CR(f) and has the eventually shadowing
property on CR(f), then f has the spectral decomposition.

In Section 5, we characterize the measure expanding diffeomorphsims on
compact smooth manifolds via the notion of Ω-stability. More precisely, we
show that a diffeomorphism f on a compact smooth manifold is C1 stably
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invariantly measure expanding if and only if it is Ω-stable; and prove that
C1-generically, f is invariantly measure expanding if and only if it is Ω-stable.

2. Expanding measures and eventually shadowing property

Throughout this paper, we denote by X a compact metric space with a
metric d and f a homeomorphism on X, and assume that Borel measure on
X implies Borel probability measure on X. For x ∈ X, we write Of (x) =
{f i(x) | i ∈ Z} the orbit of x ∈ X under f . We first introduce another notion
of expansiveness for Borel measures.

Definition. A Borel measure µ on X is said to be expanding for f (or f is
µ-expanding) if there is δ > 0 (called an expanding constant of µ) such that

µ(Γfδ (x) \Of (x)) = 0 for all x ∈ X. We say that f is measure expanding (resp.
invariantly measure expanding) if every Borel measure (resp. invariant Borel
measures) on X is expanding for f .

We denote by M(X) the collection of all Borel measures on X with the
weak* topology. Then we can easily show that for any f , the collection Ef (X)
of all expanding measures for f is dense inM(X). Clearly any strongly measure
expansive homeomorphism is measure expanding, but the converse is not true
as we see in the following example.

Example 2.1. For each n ∈ N, let An = {an0, an1} ⊂ R+ be such that
An ∩ Am = ∅ if n 6= m, and An converges to {0} as n → ∞ under the
Hausdorff metric. Let

X = {∞} ∪ (Z× {0}) ∪

(⋃
n∈N
{−n, . . . , n} ×An

)
be a subspace of the sphere R2 ∪ {∞}. We define a homeomorphism f on X
by

f(x) =


∞ if x =∞,

(n+ 1, 0) if x = (n, 0),
(i+ 1, anj) if x = (i, anj

),
(−n, an1) if x = (n, an0),
(−n, an0) if x = (n, an1),

where −n ≤ i ≤ n − 1, j = 0, 1, and n ∈ N. For δ > 0, we see that Γfδ (x) \
Of (x) = ∅ for any x ∈ X, and so any Borel measure on X is expanding for f .

On the other hand, we define an invariant Borel measure µ of f by

µ(A) =
∑
j=0,1
n∈N

δ(0,anj)(A)

2n+1

for any Borel subset A of X, where δz is the Dirac measure centered at z ∈ X.

Assume that µ is strongly expansive for f . Take δ > 0 such that µ(Γfδ (x) \
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{x}) = 0 for any x ∈ X. Let n ∈ N be such that 1/n < δ and (0, an0) ∈
Γfδ ((0, an1)). Then we have

µ(Γfδ ((0, an1)) \ {(0, an1)}) ≥ µ({(0, an0)}) > 0.

The contradiction shows that f is not strongly measure expansive.

Recall that a homeomorphism f is geometrically expansive if there is δ > 0

such that Γfδ (x) ⊂ Of (x) for all x ∈ X. Note that if a homeomorphism f
is expansive, then it is geometrically expansive, but the converse is not true
in general. In fact, the homeomorphism f in Example 2.1 is geometrically
expansive, but it is not expansive. In the following theorem, we characterize
measure expanding homeomorphisms on compact metric spaces via the notion
of geometrical expansiveness.

Theorem 2.2. A homeomorphism f is measure expanding if and only if it is
geometrically expansive.

Proof. Suppose that a homeomorphism f on a compact metric space X is
measure expanding, but not geometrically expansive. Then for each n ∈ N,

there is xn ∈ X such that Γf1/n(xn)\Of (xn) 6= ∅. Take a point yn ∈ Γf1/n(xn)\
Of (xn) for each n ∈ N, and define a measure µ ∈M(X) by

µ(A) =

∞∑
i=1

δyn(A)

2n
, ∀A ∈ β(X),

where β(X) denotes the Borel σ-algebra on X, and δz is the Dirac measure
centered at z ∈ X. Let ε > 0 be a measure expanding constant of f , and
choose n ∈ N with 1/n < ε. Since

µ(Γfε (xn) \ Of (xn)) ≥ δyn(Γfε (xn) \ Of (xn))

2n
> 0,

we derive a contradiction. Consequently we have that f is geometrically ex-
pansive. The converse is clear, and so completes the proof. �

Remark 2.3. If a homeomorphism f on X is invariantly measure expanding,
then there exists δ > 0 which is independent of the choice of invariant measures

on X such that µ(Γfδ (x)\Of (x)) = 0 for all x ∈ X and invariant Borel measures
µ on X. Indeed, by contradiction, for each n ∈ N there are xn ∈ X and an

invariant Borel measure µn such that µn(Γf1/n(xn) \ Of (xn)) > 0. Define a

measure µ on X by

µ(A) =

∞∑
n=1

µn(A)

2n
, ∀A ∈ β(X).

Then it is an invariant measure on X. Since µ is expanding for f , take an
expanding constant δ of µ. Choose n ∈ N such that 1/n < δ. Then we have

µ(Γfδ (xn) \ Of (xn)) ≥
µn(Γfδ (xn) \ Of (xn))

2n
> 0.
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This contradicts the assumption that f is invariantly measure expanding.

In the rest of this section, we introduce the notion of eventually shadowing
property for homeomorphisms on compact metric spaces. First we recall the
notion of shadowing property for homeomorphisms. For given δ > 0, a sequence
{xi}bi=a (−∞ ≤ a < b ≤ ∞) in X is called a δ-pseudo orbit (δ-chain) of f if
d(f i(xi), xi+1) ≤ δ for all a ≤ i ≤ b− 1. We say that a homeomorphism f has
the shadowing property on an invariant subset Λ of X if for any ε > 0, there is
δ > 0 such that any δ-pseudo orbit {xi}i∈Z ⊂ Λ can be ε-shadowed by a point
x ∈ X; that is, d(f i(x), xi) ≤ ε for all i ∈ Z.

Recently, Good and Meddaugh [8] introduced another notion of shadowing
property for continuous maps called eventual shadowing. We say that a contin-
uous map f on X has the eventually shadowing property if for any ε > 0, there
is δ > 0 such that for any δ-pseudo orbit {xi}∞i=0 can be eventually ε-shadowed
by a point x ∈ X; that is, there is N > 0 such that d(f i(x), xi) < ε for all
i ≥ N . This concept was also called by (N,Fcf )-shadowing property in [11].
In the sequel, we introduce the notion of eventually shadowing property for
homeomorphisms on compact metric spaces as follows.

Definition. We say that a homeomorphism f has the eventually shadowing
property on an invariant subset Λ of X if for any ε > 0, there is δ > 0 such
that any δ-pseudo orbit {xi}i∈Z ⊂ Λ can be eventually ε-shadowed by a point
x ∈ X; that is, there is N > 0 such that d(f i(x), xi) ≤ ε for all |i| ≥ N .

It is clear that if a homeomorphism f has the shadowing property, then it
has the eventually shadowing property. However the converse is not true in
general. To show this, we need some definitions and a lemma.

We say that a sequence {xi}ni=0 in X is a δ-chain of f from x to y (x, y ∈ X)
if x0 = x and d(f(xn), y) ≤ δ. We write x ∼δ y if there are δ-chains from x to
y and from y to x; and write x ∼ y if x ∼δ y for any δ > 0. The chain recurrent
set of f , denoted by CR(f), is the collection of all x ∈ X such that x ∼ x.
Note that ∼ (or ∼δ) is an equivalence relation on CR(f). Every equivalent
class of ∼ (resp. ∼δ) is called a chain component (resp. δ-chain component) of
f , respectively.

Lemma 2.4. Let f be a homeomorphism on a compact metric space X. For
any ε > 0, there is δ > 0 such that for any δ-pseudo orbit {xi}i∈Z, there is
N > 0 such that d(xi, CR(f)) ≤ ε for all |i| ≥ N .

Proof. By contradiction, suppose that there is ε > 0 such that for any n ∈ N,
there are a 1

n -pseudo orbit {xni }i∈N and a subsequence {xnik}k∈N (ik →∞) such
that d(xnik , CR(f)) > ε. Since X is compact, taking a subsequence if necessary,
we may assume that xnik converges to a point, say pn, in X as k →∞, and pn

converges to p ∈ X as n→∞. It is clear that d(p, CR(f)) ≥ ε.
We observe that p ∈ CR(f). Indeed, for any δ > 0, let 0 < γ < δ/3 be such

that d(x, y) < γ (x, y ∈ X) implies d(f(x), f(y)) < δ/3. Take n ∈ N such that
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1/n < γ, d(pn, p) < γ and k ∈ N with d(xnik , p), d(xnik+1
, p) < γ. Then, we have

d(f(p), xnik+1) ≤ d(f(p), f(pn)) + d(f(pn), f(xnik)) + d(f(xnik), xnik+1) < δ,

and

d(f(xnik+1−1), p) ≤ d(f(xnik+1−1), xnik+1
) + d(xnik+1

, pn) + d(pn, p) < δ.

It implies that {p, xnik+1, . . . , x
n
ik+1−1} is a δ-chain from p to itself, and so p ∈

CR(f). The contradiction completes the proof. �

Denote by Fix(f) and Per(f) the collection of all fixed and periodic points of
f , respectively. For given x ∈ X, we denote by ω(x) (resp. α(x)) the collection
of y ∈ X satisfying that there is a sequence {nk}k∈N such that fnk(x)→ y as
nk →∞ (resp. nk → −∞).

Now we give an example to show that it has the eventually shadowing prop-
erty, but does not have the shadowing property.

Example 2.5. Let f be a homeomorphism on the unit circle S1 = {(1, θ) | θ ∈
[0, 2π)} with Fix(f) = {(1, π), (1, π/2), (1, 0)}. For each x = (1, θ) /∈ Fix(f),
we assume that

• if θ ∈ (0, π/2), then α(x) = {(1, π/2)} and ω(x) = {(1, 0)};
• if θ ∈ (π/2, π), then α(x) = {(1, π)} and ω(x) = {(1, π/2)};
• if θ ∈ (π, 2π), then α(x) = {(1, π)} and ω(x) = {(1, 0)}.

It is clear that f does not have the shadowing property. We show that f
has the eventually shadowing property. Indeed, for any ε > 0, take δ > 0
corresponding to ε/2 by Lemma 2.4. Let {xi}i∈Z be a δ-pseudo orbit of f .
Then there is N > 0 such that xi ∈ B(p, ε/2) for all i ≥ N and xi ∈ B(q, ε/2)
for all −i ≥ N for some p, q ∈ CR(f) = Fix(f). It is clear that {xi}i∈Z is
eventually ε-shadowed by some point z such that ω(z) = p and α(z) = q.

A point x is said to be nonwandering for f if for any neighborhood U of x,
there is n > 0 such that fn(U) ∩ U 6= ∅. The collection of all nonwandering
points of f is called the nonwandering set of f , denoted by Ω(f). It is well
known that Ω(f) ⊂ CR(f). In the following theorem, we show that if f has
the eventually shadowing property on its chain recurrent set CR(f), then its
restriction f |Ω(f) on nonwandering set has the shadowing property.

Theorem 2.6. Suppose that a homeomorphism f on a compact metric space X
has the eventually shadowing property on its chain recurrent set CR(f). Then
the restriction f |Ω(X) on its nonwandering set has the shadowing property.

To prove the above theorem, we need the following lemma.

Lemma 2.7. Suppose that a homeomorphism f on a compact metric space X
has the eventually shadowing property on its chain recurrent set CR(f). Then
we have Ω(f) = CR(f).
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Proof. For any ε > 0, take a constant δ > 0 corresponding to ε by the eventually
shadowing property of f on CR(f). For any x ∈ CR(f), let {xi}ki=0 be a finite
δ-chain from x to itself. We extend it to an infinite δ-chain {xi}i∈Z in CR(f)
by defining xn(k+1)+i = xi for all 0 ≤ i ≤ k and n ∈ Z. By the eventually
shadowing property of f on CR(f), there are y ∈ X and N > 0 such that
d(f i(y), xi) < ε for all |i| ≥ N . Then, we have

d(fN(k+1)(y), xN(k+1)) = d(fN(k+1)(y), x) < ε,

and

d(f−N(k+1)(y), x−N(k+1)) = d(f−N(k+1)(y), x) < ε.

Hence we derive that

f2N(k+1)(f−N(k+1)(y)) ∈ f2N(k+1)(B(x, ε)) ∩B(x, ε) 6= ∅.

Since ε is arbitrary, we see that x is a nonwandering point of f , and so CR(f) =
Ω(f). �

To prove Theorem 2.6, we use the following well known fact: f has the
shadowing property if and only if it has the finite shadowing property, i.e., for
any ε > 0, there is δ > 0 such that any finite δ-pseudo orbit {xi}ni=0 can be
ε-shadowed by a point x ∈ X.

End of Proof of Theorem 2.6. Suppose that a homeomorphism f has the even-
tually shadowing property on CR(f). For any ε > 0, take a constant δ > 0
corresponding to ε by the eventually shadowing property of f on CR(f). By
Lemma 2.7, we have

Ω(f) = CR(f) =
⋃
λ∈Λ

Bλ,

where Bλ’s are equivalent classes under δ-relation.
Let {xi}ki=0 be a δ-pseudo orbit of f in Ω(f), and λ ∈ Λ be such that

x0 ∈ Bλ. It is easy to see that {xi}ki=0 ⊂ Bλ. Since x0 ∼δ xk, we can take

{xk+i}li=0 as a δ-chain from xk to x0. Then {xi}k+l
i=0 is a δ-chain from x to

itself. We extend it to be a δ-pseudo orbit {xi}i∈Z by xn(k+l+1)+i = xi for all
0 ≤ i ≤ k+ l and n ∈ Z. By the eventually shadowing property of f on CR(f),
there are y ∈ X and N > 0 such that

d(f i(y), xi) < ε for all |i| ≥ N.

Since X is compact, we assume that f (k+l+1)nj (y) converges to a point, say
z ∈ X, as nj →∞. We note that z ∈ Ω(f). Moreover we have

d(f i(z), xi) = lim
j→∞

d(f i(f (k+l+1)nj (y)), x(k+l+1)nj+i) ≤ ε, ∀0 ≤ i ≤ k.

It means that {xi}ki=0 is ε-shadowed by z ∈ Ω(f). Therefore f |Ω(f) has the
finite shadowing property, and so completes the proof. �
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Remark 2.8. By Theorem 4.5 in [11], we see that a continuous map f on a
compact metric space X has the eventually shadowing property on its chain
recurrent set CR(f) if and only if its restriction f |Ω(f) has the shadowing
property. However the result is not true for the case of homeomorphisms, that
is, the converse of Theorem 2.6 does not hold in general. Indeed, let f be a
homeomorphism on the interval X = [0, 2] such that Ω(f) = Fix(f) = {0, 1, 2};
for any x ∈ (0, 1), ω(x) = {1} and α(x) = {0}; for any x ∈ (1, 2), ω(x) = {2}
and α(x) = {1}. Clearly, we see that f |Ω(f) has the shadowing property but f
does not have the eventually shadowing property on X.

3. Extension of expanding measures

We say that a homeomorphism f on a compact metric space X is expansive
(resp. invariantly measure expanding) on an invariant subset Λ of X if its
restriction f |Λ on Λ is expansive (resp. invariantly measure expanding). It is
clear that if a homeomorphism f is expansive, then it is expansive on every
invariant subset Λ of X. However, the converse is not true in general.

In this section, we prove that if a homeomorphism f is invariantly measure
expanding on its chain recurrent set CR(f), then it is invariantly measure
expanding. Moreover, we construct a homeomorphism f which is invariantly
measure expanding on its nonwandering set Ω(f), but not invariantly measure
expanding.

For an invariant set Λ ⊂ X and δ > 0, we observe that Γ
f |Λ
δ (x) = Γfδ (x)∩Λ

for all x ∈ X. We denote by M(Λ, f) the collection of all invariant Borel
probability measures on Λ ⊂ X. For any µ ∈ M(X, f) and p /∈ Per(f), we
note that

µ(Of (p)) =
∑
i∈Z

µ(f i(p)) =
∑
i∈Z

µ(p).

Hence if µ(Of (p)) > 0, then p is a periodic point of f .

Theorem 3.1. A homeomorphism f on a compact metric space X is invari-
antly measure expanding if and only if it is invariantly measure expanding on
its chain recurrent set CR(f).

Proof. Suppose that f is invariantly measure expanding on CR(f). Then there
exists δ > 0 such that

µ
(
Γf2δ(x) ∩ CR(f) \ Of (x)

)
= 0, ∀x ∈ CR(f), ∀µ ∈M(CR(f), f).

We first show that µ(Γf2δ(x)\Of (x)) = 0 for all x ∈ CR(f) and µ ∈M(X, f).
For any µ ∈ M(X, f), we define an invariant measure ν ∈ M(CR(f), f) by
ν(A) = µ(A) for any Borel set A ⊂ CR(f). Since f is invariantly measure
expanding on CR(f), for any x ∈ CR(f) we have

µ(Γf2δ(x) \ Of (x))=µ((Γf2δ(x) ∩ CR(f)) \ Of (x))+µ((Γf2δ ∩ CR(f)c) \ Of (x))

=ν((Γf2δ(x) ∩ CR(f)) \ Of (x)) = 0.
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Next we claim that f is invariantly measure expanding, i.e., µ(Γfδ (x) \
Of (x)) = 0 for all x ∈ X and µ ∈ M(X, f). By contradiction, we sup-
pose that there are an invariant measure µ ∈ M(X, f) and x ∈ X such that

µ(Γfδ (x) \ Of (x)) > 0. By the above result, we observe that x /∈ CR(f).

Since µ(CR(f)) = 1, there is p ∈ (Γfδ (x) ∩ CR(f)) \ Of (x). Note that

µ(Γf2δ(p) \ Of (p)) = 0 since p ∈ CR(f). Hence we have µ(Γfδ (x) \ Of (p)) = 0.
It derives that µ(Of (p)) > 0, and so p is a periodic point of f . Let m be the
period of p. Since

d(fnm+k(x), fk(p)) = d(fnm+k(x), fnm+k(p)) < δ, ∀n ∈ Z, ∀k ∈ Z,

we have fnm(x) ∈ Γfδ (p) for all n ∈ Z. We consider the following two cases.
Case 1: There is a limit point y of {fnm(x)}n∈Z such that y /∈ Of (x). Note

that y ∈ Γfδ (p) and y ∈ CR(f). Define an invariant measure µp ∈M(X, f) by

µp(A) =
1

m

m−1∑
i=0

δfi(p)(A), ∀A ∈ β(X),

where δz is the Dirac measure centered at z ∈ X. Since p ∈ Γfδ (y), we have

µp
(
Γfδ (y) \ Of (y)

)
≥ µp({p}) > 0,

which is a contradiction.
Case 2: Any limit point of {fnm(x)}n∈Z belongs to the orbit Of (p). We

may assume that there are subsequences {fmnk(x)}k∈N with nk → ∞ and
{fmnl}k∈N with nl → −∞ such that

fmnk(x)→ fa(p) as k →∞, and fmnl(x)→ f b(p) as l→∞
for some a ≤ b ∈ N. For any ε > 0, there are k > 0 and l < 0 such that

d(fmnk(x), fa(p)) < ε and d(fmnl(x), f b(p)) < ε.

We can check that

{x, . . . , fmnk−1(x), fa(p), fa+1(p), . . . , f b−1(p), fmnl(x), . . . , f−1(x)}
is an ε-chain from x to itself. Since ε is arbitrary, x ∈ CR(f) which is a
contradiction. Therefore f is invariantly measure expanding. �

In the following example, we construct a homeomorphism f which is invari-
antly measure expanding on its nonwandering set Ω(f), but not invariantly
measure expanding.

Example 3.2. For each n ∈ N, let Sn be the circle in R2 centered at (0, 1
n )

with radius 1
n , and X =

⋃
n∈N Sn. Let f be a homeomorphism on X such that

the origin 0 = (0, 0) is the unique fixed point of f and α(p) = ω(p) = {0} for
all p ∈ X.

Since Ω(f) = {0}, it is clear that f is invariantly measure expanding on

Ω(f). For any δ > 0, there is pn = (0, 1
n ) (n ∈ N) such that 0 ∈ Γfδ (pn).

Denote by δ0 the Dirac measure centered at 0. We see that δ0 ∈M(X, f) and
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δ0(Γfδ (pn)\Of (pn)) > 0. It implies that f is not invariantly measure expanding
on X.

4. Spectral decomposition

The classical spectral decomposition theorem by Smale [12] and Bowen [3]
says that if a diffeomorphism f on a compact smooth manifold M satisfies
Axiom A, then the nonwandering set Ω(f) can be decomposed into a disjoint
union of finitely many closed invariant sets (called basic sets) on which f is
topologically transitive. Moreover, any basic set can be expressed by a finite
disjoint union of mixing sets.

There are many works that generalize the spectral decomposition theorem to
more general settings (e.g, see [1], [5], [6] and [9]). In particular, Aoki [1] proved
that if a homeomorphism f on a compact metric space is expansive and has
the shadowing property on its nonwandering set Ω(f), then the nonwandering
set has the spectral decomposition.

In this section we present a measurable version of spectral decomposition
theorem by Smale [12] and Bowen [3] for invariantly measure expanding home-
omorphisms with the eventually shadowing property on compact metric spaces.
More precisely, we show that if a homeomorphism is invariantly measure ex-
panding on its chain recurrent set CR(f) and has the eventually shadowing
property on CR(f), then f has the spectral decomposition which is slightly
different with the Bowen’s decomposition as we can see in the following theo-
rem.

Theorem 4.1. Let f be a homeomorphism on a compact metric space. Suppose
that f is invariant measure expanding on its chain recurrent set CR(f) and has
the eventually shadowing property on CR(f). Then there is a decomposition of
the nonwandering set Ω(f) into disjoint closed sets, Ω(f) = B1 ∪ · · · ∪Bn such
that

(i) each Bi is invariant and f is topologically transitive on each Bi;

(ii) for each 1 ≤ i ≤ n, there is ai ∈ N such that Bi =
⋃ai−1
k=1 Ci,k. Here

each Ci,k is a closed set with nonempty interior such that f(Ci,k) =
Ci,k+1 for each 0 ≤ k ≤ ai − 1, fai(Ci,k) = Ci,k, Coi,k ∩ Coi,l = ∅ for
0 ≤ k 6= l ≤ ai − 1, and fai is topologically mixing on Coi,k, where Coi,k
denotes the interior of Ci,k in Bi.

We recall that a homeomorphism f is topologically transitive on an invariant
set Λ if for any nonempty open subset U, V of f , there is N > 0 such that
fN (U) ∩ V 6= ∅.

Before proving the above theorem, we observe that spectral decomposition
theorem does not hold for the measure expansive homeomorphisms with the
shadowing property (see Theorem A in [4]). For completeness we present an
example as follows.
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Example 4.2. Let Σ2 be the sequence space on two symbols 0 and 1 with the
metric

d0(x, y) =

{
1

2n if n = max{k ∈ N |xi = yi for all |i| < k},
0 if x = y,

where x = (xi)i∈Z, y = (yi)i∈Z ∈ Σ2. Consider the shift map σ : Σ2 → Σ2

given by

(σ(x))i = xi+1, ∀x = (x)i∈Z ∈ Σ2.

Then σ is an expansive homeomorphism of Σ2 and has the shadowing property.
For each n ∈ N, choose a point pn ∈ Σ2 with the period n, and let E =⋃
n∈NOσ(pn). Take a copy F of E such that Σ2 ∩ F = ∅, and let X = Σ2 ∪ F.

Then F can be enumerated by a bijection b : E → F which assign an element
σk(pn) of E to an element b(σk(pn)) := qnk in F , where n ∈ N and 0 ≤ k < n.
Consider a metric D on X defined by

D(x, y) =


d0(x, y) if x, y ∈ Σ2,
1
n + d0(x, σk(pn)) if x ∈ Σ2, y = qnk ∈ F,
1
n + 1

m + d0(σk(pn)), σl(pm)) if x = qnk, y = qml ∈ F.

Consider a homeomorphism f of X given by

f(x) =

 σ(x) if x ∈ Σ2,
qn(k+1) if x = qnk, 0 ≤ k < n− 1,
qn0 if x = qn(n−1).

Then we can see that f is 2-expansive, and has the shadowing property.
Suppose that f has the spectral decomposition, i.e., the nonwandering set

Ω(f) can be decomposed by a disjoint union of finitely many invariant closed
sets

Ω(f) = B1 ∪ · · · ∪Bl,
on each of which f is topologically transitive. Then there is Bi (1 ≤ i ≤ l)
contains infinitely many periodic points qnj0 for j ∈ N. Since each of Of (qnj0)
is open and f is topologically transitive on Bi, for any j 6= k there is N > 0
such that

fN (Of (qnj0)) ∩ Of (qnk0) 6= ∅.
This contradicts to the fact that each Of (qnj0) is invariant. Therefore f does
not admit the spectral decomposition.

We recall the concepts of local stable sets (or local unstable sets) and stable
sets (or unstable sets), respectively, as follows. For given ε > 0 and p ∈ X, we
define

W s
ε (p) = {x ∈ X | d(fn(x), fn(p)) < ε,∀n ∈ N},

Wu
ε (p) = {x ∈ X | d(f−n(x), f−n(p)) < ε,∀n ∈ N},

W s(p) = {x ∈ X | d(fn(x), fn(p))→ 0 as n→∞},
Wu(p) = {x ∈ X | d(f−n(x), f−n(p))→ 0 as n→∞}.
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It is well known that if a homeomorphism f is expansive on a compact metric
space, then there is e > 0 such that

W s
e (p) ⊂W s(p) and Wu

e (p) ⊂Wu(p)

for all p ∈ Per(f). It is a key property to prove the spectral decomposi-
tion theorem, and it also holds for strongly measure expansive homeomor-
phisms (see Theorem 5.1 in [5]). However, we note that the property does
not hold for invariantly measure expanding homeomorphisms. Indeed, let f
be the homeomorphism given in Example 2.1. We can check that f is in-
variantly measure expanding. For any e > 0, there is n ∈ N such that
(0, an0) ∈W s

e ((0, an1)) \W s((0, an1)).
We need the following lemma for the proof of the spectral decomposition.

Lemma 4.3. Suppose that a homeomorphism f is invariantly measure expand-
ing on its chain recurrent set CR(f). Then there is a constant e > 0 such that
if

d(f i(x), f i(p)) ≤ e, ∀i > 0 (resp. ∀i < 0)

for some x ∈ X and p ∈ Per(f), then

d(f i(x),Of (p))→ 0 as i→∞ (resp. i→ −∞).

Proof. By Theorem 3.1, we suppose that f is an invariantly measure expanding
homeomorphism on a compact metric space X. Let e be a constant such
that µ(Γfe (x) \ Of (x)) = 0 for all x ∈ X and µ ∈ M(X, f). We claim that
if d(f i(x), f i(p)) ≤ e for all i > 0 and for some x ∈ X, p ∈ Per(f), then
d(f i(x),Of (p)) → 0 as i → ∞. By contradiction, we assume that there are
x ∈ X, p ∈ Per(f) and r > 0 such that d(f i(x), f i(p)) ≤ e for all i > 0,
and there is a sequence {ik ∈ N}k∈N converging to infinity as k → ∞ and
d(f ik(x),Of (p)) > r for all k ∈ N. Since X is compact, taking a subsequence
if necessary, we suppose that f ik(x)→ x0 and f ik(p)→ p0 as k →∞. Since

d(x0,Of (p)) = lim
k→∞

d(f ik(x),Of (p)) ≥ r,

we observe that x0 /∈ Of (p). Moreover, for each i ∈ Z, we have

d(f i(x0), f i(p0)) = lim
k→∞

d(f i+ik(x), f i+ik(p)) ≤ e,

and so p0 ∈ Γfe (x0). We define an invariant Borel measure µ of f by

µ(A) =
1

np

np−1∑
i=0

δfi(p0)(A), ∀A ∈ β(X),

where np is the period of p0. Since f is invariantly measure expanding, we have
µ(Γfe (x0)\Of (x0)) ≥ µ(p0) > 0. The contradiction implies d(f i(x),Of (p))→ 0
as i→∞.

Similarly we can show that if d(f i(x), f i(p)) ≥ e for all i < 0 for some x ∈ X
and p ∈ Per(f), then d(f i(x),Of (p))→ 0 as i→ −∞. �
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Remark 4.4. Suppose that f is invariantly measure expanding on its chain
recurrent set CR(f). For given p ∈ Per(f) with period np, there is ε = ε(p)
such that W s

ε (p) ⊂W s(p) and Wu
ε (p) ⊂Wu(p). Indeed, let e > 0 be given by

Lemma 4.3, and ε < e be such that

B(f i(p), ε) = {f i(p)}, ∀ 0 ≤ i ≤ np − 1.

Let x ∈ W s
ε (p). Since {fknp+i(x)}k∈N ⊂ B(f i(p), ε) for all 0 ≤ i ≤ np − 1 and

ω(x) ⊂ Of (p), we have fknp+i(x)→ f i(p) as k →∞. Then x ∈W s(p), and so
W s
ε (p) ⊂W s(p). Similarly, we also have Wu

ε (p) ⊂Wu(p).

Lemma 4.5. Suppose f is invariant measure expanding on its chain recurrent
CR(f) and has the eventually shadowing property on CR(f). Then Per(f) =
CR(f).

Proof. By Theorems 2.6 and 3.1, we can suppose that f is invariantly measure
expanding on compact metric space X and f |Ω(f) has the shadowing property.
Let x ∈ CR(f). It is sufficient to show that for any ε > 0, there is a periodic
point pε of f such that d(pε, x) < ε. We fix 0 < ε < e/2, where e is an
invariantly measure expanding constant of f . Take δ > 0 corresponding to
ε by the shadowing property of f |Ω(f). Since x ∈ CR(f), there is a δ-chain
{xi}ni=0 of f from x to itself. We extend it to a δ-pseudo orbit {xi}i∈Z of f
by defining xk(n+1)+i = xi for all k ∈ Z and 0 ≤ i ≤ n. By the shadowing
property of f |Ω(f), there is pε ∈ Ω(f) such that

d(f i(pε), xi) < ε for all i ∈ Z.

For each 0 ≤ i ≤ n we have

d(f j(f i(pε)), f
j(fk(n+1)+i(pε)))

≤ d(f j(f i(pε)), xi+j) + d(xj+i+k(n+1), f
j(fk(n+1)+i(pε))) ≤ e.

Then fk(n+1)(f i(pε)) ∈ Γfe (f i(pε)) for all 0 ≤ i ≤ n, and so

Of (pε) ⊂
n⋃
i=0

Γfe (f i(pε)).

Let µ be an invariant Borel measure on X such that µ(O(pε)) = 1. Then
there is 0 ≤ i ≤ n such that µ(Γfe (f i(pε))) > 0. Since f is invariantly measure
expanding on CR(f), we get

µ(Γfe (f i(pε)) \ Of (f i(pε))) = 0.

It implies that µ(Of (f i(pε))) > 0, and so pε is a periodic point of f with

d(pε, x) < ε. Consequently we have Per(f) = CR(f). �

Proof of Theorem 4.1. By Theorems 2.6 and 3.1, we can suppose that f is in-
variantly measure expanding on X and its restriction f |Ω(f) has the shadowing
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property. By Lemma 4.5, we have

Ω(f) = CR(f) =
⋃
λ∈Λ

Bλ,

where Bλ’s are chain components of f . We claim that Bλ is open in Ω(f). Let
e > 0 be given in Lemma 4.3. Take δ > 0 corresponding to e by the shadowing
property of f |Ω(f). Fix λ ∈ Λ, we denote by

Uλ = {y ∈ Ω(f) | d(y,Ω(f)) > δ}

the δ-neighborhood of Bλ in Ω(f). Since Per(f) = Ω(f), we take p ∈ U ∩
Per(f), and y ∈ Bλ such that d(y, p) < δ.

We show that p ∼ y. For given τ > 0, let pτ ∈ Per(f) be such that
d(pτ , y) < τ . It is easy to see that pτ ∼τ y. Moreover, let {xi}i∈Z be a δ-
pseudo orbit defined by xi = f i(pτ ) if i < 0 and xi = f i(p) if i ≥ 0. By the
shadowing property of f |Ω(f), there is z ∈ Ω(f) such that

d(f i(z), f i(pτ )) ≤ e for all i > 0,

and

d(f i(z), f i(pτ )) ≤ e for all i < 0.

By Lemma 4.3, there are i1 < 0 < i2 such that d(f i1(z), f(pτ )) < τ and
d(f i2(z), p) < τ . Then {p, f i1(z), . . . , f i2−1(z)} is a δ-chain of f from pτ to p.
Similarly, we can construct a δ-chain of f from p to pτ . Then p ∼τ pτ ∼τ y.
Since τ is arbitrary, we have p ∼ y. This means p ∈ Bλ. Hence

Bλ ⊃ U ∩ Per(f) ⊃ U ∩ Per(f) = U.

Therefore, Bλ is open in Ω(f), and so

Ω(f) =

n⋃
i=1

Bi.

Next, we prove that f is topologically transitive on each chain component
Bi. Let γ > 0 be such that γ-neighborhoods of Bi with 1 ≤ i ≤ n in Ω(f) are
disjoint. For fixed 1 ≤ i ≤ n, let U, V be two open subsets in Bi. There is
0 < r < γ such that {z ∈ Bi | d(z, x) < r} ⊂ U and {z ∈ Bi | d(z, y) < r} ⊂ V
for some x ∈ U and y ∈ V . Take δ1 > 0 corresponding to r by the shadowing
property of f |Ω(f). Since x, y belong to the same chain component Bi, there is

a δ1-chain {zi}m−1
i=0 from x to y. By the shadowing property of f |Ω(f), there is

z ∈ Ω(f) such that

d(z, x) ≤ r and d(fm(z), y) ≤ r.

By the choice of γ, we note that z ∈ Bi, and so fm(z) ∈ fm(U) ∩ V 6= ∅. It
implies that f is topologically transitive on each chain component Bi.

To prove part (ii), we need some notations. For convenience, we fix B = Bi
for some 1 ≤ i ≤ n. For each q ∈ Per(f) ∩ B, let Cq := W s(q) ∩B. Fix
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p ∈ Per(f) ∩ B with period np. By Remark 4.4, there is 0 < ε0 < γ with
respect to p such that W s

ε0(f i(p)) ⊂W s(f i(p)) for all 0 ≤ i ≤ np − 1.

Claim 1: B =
⋃np−1
i=0 Cfi(p).

Let x ∈ B and ε < ε0. Take δ > 0 corresponding to ε by the shadowing
property of f |Ω(f). Since x, p ∈ B, there is a δ-chain {xi}ki=0 of f from x to p.
Consider the δ-pseudo orbit {yi}i∈Z of f given by

yi =

 f−i(x) if i < 0,
xi if 0 ≤ i ≤ k,

f i−k−1(p) if i ≥ k + 1.

By the shadowing property of f |Ω(f), there is y ∈ Ω(f) such that

d(f j(fk+1(y)), f j(p)) ≤ ε, ∀j ≥ 0.

Since ε < ε0, we can assume that y ∈ B. By the choice of ε0, we get fk+1(y) ∈
W s(p) and so y ∈

⋃np−1
i=0 W s(f i(p)) ∩ B. Since ε is arbitrary small, we derive

that x ∈
⋃np−1
i=0 Cfi(p).

Claim 2: If q ∈ Cp ∩ Per(f), then Cq = Cp.
Let nq be the period of q. First, we prove that Cq ⊂ Cp. Indeed, since

q ∈ Cp, there is a sequence {yn}n∈N ⊂ W s(p) ∩ B which converges to q as n
tends to infinity. Fix x ∈ W s(q) ∩ B. For each i ∈ N, we let γi = ε0

2(i+1) ,

and take δi > 0 corresponding to γi by the shadowing property of f |Ω(f). Let
Li ≥ 2 be such that

d(yLi
, q) <

δi
2

and d(fnq(npLi)(x), q) <
δi
2
.

Since

d(fnpnqLi(x), yLi) ≤ d(fnpnqLi(x), q) + d(q, yLi) ≤ δi,
we can define a δi-pseudo orbit by defining zj = f j(x) if j ≤ npnqLi − 1 and
zj = f j−npnqLi(yLi

) if j ≥ npnqLi. By the shadowing property of f |Ω(f), there
is xi ∈ B such that d(xi, x) < γi. Then we obtain a sequence {xi}i∈N in B
which converges to x as i tends to infinity.

Moreover, we check that xi ∈ W s(p) for all i ∈ N. Indeed, for each i ∈ N,
we take Ni > 0 such that

fNi(p) = p and d(f j+Ni(yLi), f
j+Ni(p)) <

ε0

2

for all j ∈ N. Then for all j ∈ N, we have

d(f j(fnpnqLi+Ni(xi)), f
j(fNi(p))) ≤ d(f j(fnpnqLi+Ni(xi)), f

j+Ni(yLi
))

+ d(f j+Ni(yLi
), f j(fNi(p)))

≤ γi +
ε0

2
< ε0.

Then we get

fnpnqLi+Ni(xi) ∈W s
ε0(fNi(p)) ⊂W s(fNi(p)) = W s(p),
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and so xi ∈W s(p). Hence x ∈W s(p) ∩B = Cp.
To prove Cp ⊂ Cq, it is sufficient to show that p ∈ Cq. By contradiction,

we assume that p /∈ Cq. Let d = inf{d(q, y) | y ∈ Cp \ Cq} > 0. Since q ∈ Cp,
there is x ∈ W s(p) ∩ B such that d(x, q) < d/2. We observe that x ∈ Cq.
Otherwise, x ∈ Cp \Cq implies that d(q, x) > d which is a contradiction. Then
fnpnqk(x) ∈ Cq for all k ∈ N. Since

d(fnpnqk(x), p) = d(fnpnqk(x), fnpnqk(p))→ 0 as k →∞,

we have p ∈ Cq. The contradiction shows that Cp = Cq.
Denote by Cofi(p) the interior of Cfi(p) in B for all 0 ≤ i ≤ np − 1. By

Claim 1 and Baire category theorem, there is 0 ≤ i0 ≤ np− 1 such that Co
fi0 (p)

is nonempty. Since f(Cofi(p)) = Cofi+1(p), we have Cofi(p) is nonempty for all

0 ≤ i ≤ np − 1. Suppose that Cofi(p) ∩ C
o
fj(p) 6= ∅. Since Per(f) is dense in B,

there is q ∈ Cofi(p)∩C
o
fj(p). By Claim 2, we get Cfi(p) = Cfj(p). Let 0 ≤ a ≤ np

be the smallest nonnegative number such that Cfa(fi(p)) = Cfi(p) for all i ∈ N.

Then we have B =
⋃a−1
i=0 Cfi(p).

Claim 3: fa is topologically mixing on Cop .
Let U and V be two nonempty open subsets of Cop and q be a periodic point

in V with period nq. Then nq = a.r for some r ∈ N, and take η > 0 such
that B(q, η) ⊂ V . Since for any 0 ≤ j < nq, U is open in Cop = Cofaj(p) =

Cofaj(q), we can take zj ∈ U ∩W s(faj(q)). Then there is Nj ∈ N such that

d(f i(zj), f
i(faj(q))) < η for i ≥ Nj . For i > 0 with anqi− aj ≥ Nj , we have

d(fanqi−aj(zj), q) = d(fanqi−aj(zj), f
anqi−aj(faj(q))) < η.

Let N ∈ N be such that N ≥ 1
a max{Nj | 0 ≤ j < nq}. For k ≥ N , we have

ak = a(nqi− j) ≥ Nj for some i, j ∈ N, 0 ≤ j < nq, and so

d(fka(zj), q) = d(fanqi−aj(zj), q) < η.

It means that fka(U) ∩ V 6= ∅ for all k ≥ N . Hence fa is topologically mixing
on Cop . �

5. Ω-stability of diffeomorphisms with expanding measures

In this section, we characterize the invariantly measure expanding diffeo-
morphisms on compact smooth manifolds by using the notion of Ω-stability.
Precisely, we show that a diffeomorphism f on a compact smooth manifold is
C1 stably invariantly measure expanding if and only if it is Ω-stable. More-
over, we claim that C1-generically, a diffeomorphism f is invariantly measure
expanding if and only if it is Ω-stable.

Let M be a compact smooth manifold with a metric d induced by a Rie-
mannian metric on tangent bundle TM . We denote by Diff1(M) the collection
of all C1 diffeomorphisms on M endowed with C1 topology. We say that an
invariant subset Λ of M is said to be hyperbolic for f ∈ Diff1(M) if the tangent
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bundle TΛM admits a Df -invariant splitting Es⊕Eu such that there are C ≥ 1
and λ > 0 such that

‖Dxf
n|Es

x
‖ ≤ Cλn and ‖Dxf

−n|Eu
x
‖ ≤ Cλn

for all x ∈ Λ and n ∈ N.
We recall that a diffeomorphism f satisfies Axiom A if Per(f) = Ω(f)

and Ω(f) is hyperbolic. By the Smale’s spectral decomposition theorem, the
nonwandering set Ω(f) can be decomposed into the disjoint union of basic sets
Ω(f) = B1 ∪ · · · ∪Bn. A collection Bi1 , . . . , Bik is called a cycle if there are aj
for 1 ≤ j ≤ k such that ω(aj) ⊂ Bij+1 and α(aj) ⊂ Bij with k + 1 ≡ 1. We
say that a diffeomorphism f satisfies the no-cycle condition if there does not
exist any cycles among the basic sets of Ω(f).

Definition. A diffeomorphism f on a compact smooth manifold M is said to
be C1 stably invariantly measure expanding if there is a C1 neighborhood U of
f such that for any g ∈ U , g is invariantly measure expanding.

A diffeomorphism f : M →M is said to be Ω-stable if there is a C1 neighbor-
hood U of f such that for any g ∈ U , there is a homeomorphism h : Ω(f)→ Ω(g)
such that h ◦ f = g ◦ h. We say that f ∈ F1(M) if there is a C1 neighborhood
U of f such that every periodic orbit of g ∈ U is hyperbolic. It is well known
that the following statements are pairwise equivalent:

(i) f is Ω-stable,
(ii) f ∈ F1(M),
(iii) f satisfies both Axiom A and no-cycle condition.

In the following theorem, we characterize the Ω-stability of diffeomorphisms
via the notion of C1 stably invariantly measure expanding.

Theorem 5.1. A diffeomorphism f on compact smooth manifold M is C1

stably invariantly measure expanding if and only if it is Ω-stable.

To prove Theorem 5.1, we need the following lemma which is proved in [7].

Lemma 5.2. Let f ∈ Diff1(M) and U be a C1 neighborhood of f . Then
there is δ > 0 such that for a finite set {x1, x2, . . . , xn}, a neighborhood U
of {x1, x2, . . . , xn} and linear maps Li : Txi

M → Tf(xi)M satisfying ‖Li −
Dxi

f‖ ≤ δ for all 1 ≤ i ≤ n, there are ε > 0 and g ∈ U such that

(i) g(x) = f(x) if x ∈M \ U ,
(ii) g(x) = expf(xi) ◦Li ◦ exp−1

xi
(x) if x ∈ B(xi, ε) for all 1 ≤ i ≤ n,

where exp is the exponential map of the Riemannian manifold M .

Proof of Theorem 5.1. Suppose that a diffeomorphism f on a compact smooth
manifold M is C1 stably invariantly measure expanding. Then there is a C1

neighborhood U of f such that for any g ∈ U , g is invariantly measure expand-
ing. We claim that f ∈ F1(M). By contradiction, we assume that there are
g ∈ U and a non-hyperbolic periodic point p of g. Let n be the period of p. By
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Lemma 5.2, we suppose that Dpg
n has an unique real eigenvalue or a pair of

complex eigenvalues λ of modulus 1. Let Ecp be the eigenspace corresponding
to λ.

We first consider the case that λ is a real number. We suppose that λ = 1.
For the case λ = −1, the proof is similar. By Lemma 5.2, there are ε > 0 and
h ∈ U such that hn(p) = gn(p) and

h(x) = expgi+1(p) ◦Dgi(p) ◦ exp−1
gi(p)(x)

for any x ∈ B(gi(p), ε) with 0 ≤ i ≤ n− 1. Let Ip ⊂ B(p, ε) ∩ expp(E
c
p(ε)) be

a small arc centered at p such that

• hi(Ip) ∩ hj(Ip) for 0 ≤ i 6= j ≤ n− 1,
• hn(Ip) = Ip,
• hn|Ip is the identity map.

Let L be the normalized Lebesgue measure on Ip. We define an invariant
measure µ ∈M(M,h) by

µ(A) =
1

n

n−1∑
i=0

L(h−1(A ∩ hi(Ip)))

for any Borel set A of M . For any δ > 0, there is γ > 0 such that B(p, γ)∩Ip ⊂
Γfδ (p) and B(p, γ) ∩ hi(Ip) = ∅ for 1 ≤ i ≤ n− 1. Then

µ(Γhδ (p) \ Oh(p)) ≥ µ(B(p, γ) ∩ Ip \ Of (p)) > 0.

It is a contradiction.
Suppose that λ is a complex number. For simplicity, we assume that g(p) =

p. Similarly to the first case, by Lemma 5.2, there are ε > 0 and h ∈ U such
that h(p) = g(p) and h(x) = expp ◦Dpg◦exp−1

p (x) for any x ∈ B(p, ε). Suppose
that m is the smallest integer such that Dpg

m(v) = v for any v ∈ Ecp(ε). Let
Ip be a small arc in Ecp(ε) such that

• hi(Ip) ∩ hj(Ip) for 0 ≤ i 6= j ≤ m− 1,
• hm(Ip) = Ip,
• hm|Ip is the identity map.

We define an invariant measure µ ∈M(M,h) by

µ(A) =
1

m

m−1∑
i=0

L(h−1(A ∩ hi(Ip)))

for any Borel set A in M . Similarly to the first case, we see that for any δ > 0,

µ(Γhδ (p) \ Oh(p)) > 0.

The contradiction shows that f ∈ F(M) and so it is Ω-stable.
Conversely, suppose that f is Ω-stable. Let U be a C1 neighborhood of f

such that for any g ∈ U , g satisfies Axiom A and the no-cycle condition. Then
g is expansive on CR(g) for any g ∈ U . By Theorem 3.1, we obtain that g is
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invariantly measure expanding for any g ∈ U . Hence, f is C1 stably invariantly
measure expanding. �

Next we study the invariantly measure expanding diffeomorphisms in the
C1 generic sense. We know that C1 generically, any expansive diffeomorphism
is Ω-stable (see Theorem 1.7 in [2]). By adapting the similar technique, we can
characterize the notion of invariantly measure expanding for diffeomorphisms
by using Ω-stability.

Theorem 5.3. C1-generically, a diffeomorphism on a compact smooth mani-
fold is invariantly measure expanding if and only if it is Ω-stable.

For δ ∈ (0, 1), we recall that a hyperbolic periodic point p of a diffeomor-
phism f with period k has a δ-weak hyperbolic eigenvalue if there exists an
eigenvalue λ of Dpf

k such that

(1− δ)k < |λ| < (1 + δ)k.

We say that f has no δ-weak hyperbolic eigenvalue if f has no hyperbolic periodic
point with a δ-weak hyperbolic eigenvalue.

Lemma 5.4. There exists a residual subset R of Diff1(M) such that if f ∈ R
is invariantly measure expanding, then there exists δ0 > 0 such that f has no
δ0-weak hyperbolic eigenvalue. In particular, there exists a C1 neighborhood U
of f such that any g ∈ U has no δ0

2 -weak hyperbolic eigenvalue.

Proof. Let R be a residual subset of Diff1(M) as in Lemma 5.1 in [2]. Suppose
that f ∈ R is invariantly measure expanding. By contradiction, we assume
that for each n ∈ N, there is a hyperbolic periodic point qn of f which has a 1

n -
weak hyperbolic eigenvalue. For simplicity, we assume that qn is a fixed point
of f . For each n ∈ N, by Lemma 5.2, there are εn > 0 and fn ∈ Diff1(M) with
dC1(f, fn) < 1/n such that fn(qn) = f(qn) = qn, Dqnfn has unique eigenvalue
λn such that |λn| = 1 and Dqnf

ln
n (v) = v for some ln ∈ N (take ln as the

smallest one) and for all v ∈ Ecqn(εn). Here Ecqn is the eigenspace corresponding
to λn. Going back to the manifold M by using exponential map, there exists
a small curve In passing through qn formed by periodic points of fn with the
same period ln. Let e be an invariantly measure expanding constant. For any
0 < ε < e and C1 neighborhood U of f , there are n ∈ N with fn ∈ U and two
periodic points pn, qn ∈ In of fn with the same period such that d(pn, qn) < ε.
By Lemma 5.1 in [2], there are two periodic points p, q of f which belong to
different orbits and d(f i(p), f i(q)) < e for all i ∈ Z. Let µ ∈ M(M,f) be an
invariant measure given by

µ(A) =
1

m

m−1∑
i=0

δfi(p)(A)

for any Borel set A of X. We see that µ(Γfe (q) \Of (q)) = µ({p}) > 0, which is
a contradiction.
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To prove the second part, suppose that for any C1 neighborhood U of f ,
there exist g ∈ U and a hyperbolic periodic point p of g which has a δ0

2 -
weak hyperbolic eigenvalue. By Lemma 5.1 in [2], we obtain that f has a
hyperbolic periodic point q which has a δ0-weak hyperbolic eigenvalue. It is a
contradiction, and so completes the proof. �

End of Proof of Theorem 5.3. Suppose that a diffeomorphism f ∈ Diff1(M) is
Ω-stable. Then it satisfies Axiom A, and so f is expansive on CR(f). By
Theorem 3.1, we obtain that f is invariantly measure expanding on M .

Let R be the residual subset of Diff1(M) as in Lemma 5.4. By contradiction,
we assume that f ∈ R is invariantly measure expanding and f /∈ F1(M). It
means that for any C1 neighborhood U of f , there is a diffeomorphism g ∈ U
which has a non-hyperbolic periodic point. It contradicts to Lemma 5.4. �
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