• Title/Summary/Keyword: spectral response

Search Result 702, Processing Time 0.038 seconds

Necessity and adequacy of near-source factors for seismically isolated buildings

  • Saifullah, Muhammad Khalid;Alhan, Cenk
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.91-108
    • /
    • 2017
  • Superstructures and isolation systems of seismically isolated buildings located close to active faults may observe increased seismic demands resulting from long-period and high-amplitude velocity and displacement pulses existent in near-fault ground motions as their fundamental periods may be close to or coincident with these near-fault pulse periods. In order to take these effects into account, the 1997 Uniform Building Code (UBC97) has specified near-source factors that scale up the design spectrum depending on the closest distance to the fault, the soil type at the site, and the properties of the seismic source. Although UBC97 has been superseded by the 2015 International Building Code in the U.S.A., UBC97 near-source factors are still frequently referred in the design of seismically isolated buildings around the world. Therefore it is deemed necessary and thus set as the aim of this study to assess the necessity and the adequacy of near-source factors for seismically isolated buildings. Benchmark buildings of different heights with isolation systems of different properties are used in comparing seismic responses obtained via time history analyses using a large number of historical earthquakes with those obtained from spectral analyses using the amplified spectrums established through UBC97 near-source factors. Results show that near-source factors are necessary but inadequate for superstructure responses and somewhat unconservative for base displacement response.

Dynamic crosswind fatigue of slender vertical structures

  • Repetto, Maria Pia;Solari, Giovanni
    • Wind and Structures
    • /
    • v.5 no.6
    • /
    • pp.527-542
    • /
    • 2002
  • Wind-excited vibrations of slender structures can induce fatigue damage and cause structural failure without exceeding ultimate limit state. Unfortunately, the growing importance of this problem is coupled with an evident lack of simple calculation criteria. This paper proposes a mathematical method for evaluating the crosswind fatigue of slender vertical structures, which represents the dual formulation of a parallel method that the authors recently developed with regard to alongwind vibrations. It takes into account the probability distribution of the mean wind velocity at the structural site. The aerodynamic crosswind actions on the stationary structure are caused by the vortex shedding and by the lateral turbulence, both schematised by spectral models. The structural response in the small displacement regime is expressed in closed form by considering only the contribution of the first vibration mode. The stress cycle counting is based on a probabilistic method for narrow-band processes and leads to analytical formulae of the stress cycles histogram, of the accumulated damage and of the fatigue life. The extension of this procedure to take into account aeroelastic vibrations due to lock-in is carried out by means of ESDU method. The examples point out the great importance of vortex shedding and especially of lock-in concerning fatigue.

Evaluation of Soil Factors for Determination of Seismic Base Shear Force for High Story Buildings During Earthquake (지진시 고층 건물 밑면전단력 산정을 위한 지반계수 결정에 대한 연구)

  • 윤종구;김동수;임종석;손덕길
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.85-97
    • /
    • 2003
  • In this paper, earthquake response analyses were performed using equivalent linear method at the soil sites classified as soil types III and IV in "Standard Design Loads for Buildings" Soil Factors were back-calculated by using spectral accelerations obtained from the analyses and those values are compared with soil factors described in other domestic seismic guidelines. For buildings which have the natural period higher than 0.9 sec, it was possible to use soil factors of soil types II and III instead of those of soil types III and IV, respectively. Therefore, it can be concluded that seismic base shear force can be overestimated in the current seismic guidelines and the improvement is required. required.

Simulation of Seismic Ground Accelerations and Seismic Analysis of Flexible Rotor-Bearing System Housed on the Rigid Base (지반가속도의 시뮬레이션과 강기반상(剛基盤上)에 설치된 회전측-베어링계의 지진해석)

  • Kim, Ki Bong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.4
    • /
    • pp.51-61
    • /
    • 1989
  • The classical spectral analysis of random vibration is not applicable to the random vibration of nonlinear structures or the dynamic response of active mechanical systems whose governing equations contain random parametric and inhomogeneous excitations. If the random load is simulated, dynamic responses can be obtained with the application of numerical integration schemes to the governing equations of above problems. Thus, in this paper, efficient and practical methods of simulating nonstationary random seismic ground accelerations are presented by using the fast Fourier transform technique. Typical applications of the simulated ground accelerations are the simulations of the dynamic response of rotor-bearing systems under earthquake excitations. The study of accuracy is presented to determine the applicability and practicality of methods of simulation.

  • PDF

Response of the Wave Spectrum to Turning Winds (풍향 변화에 대한 파랑 스펙트럼의 반응)

  • 윤종태
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.111-121
    • /
    • 1997
  • The spectral energy balance model is composed and the nonlinear interaction is approximated by the discrete interaction parameterization as in WAM model. The numerical results of durational limited growth test agree very well with those of the exact model, EXACT-NL. The response of a wave spectrum to a change in wind direction is investigated numerically for a sequence of direction changes 30$^{\circ}$ , 45$^{\circ}$ , 60$^{\circ}$ , 90$^{\circ}$ . The high frequency components relax more repidly to the new wind direction than the low frequency components and the relaxation process also depends on the wave age. For wind direction changes less than 60$^{\circ}$ , the coupling by nonlinear interaction is so strong that the secondary peak in input source distribution is counteracted by the negative lobe of the nonlinear interaction. For wind direction changes grater than 60$^{\circ}$ , a second independent wind-sea spectrum is generated in the new wind direction, while the old spectrum gradually decays as swell.

  • PDF

Photosensor of properties for CdSe thin film grown by Chemical Bath Deposition Method (Chemical Bath Deposition 방법으로 CdSe 박막 성장과 광센서 특성)

  • Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.1-4
    • /
    • 2004
  • Polycrystalline CdSe thin films were grown on ceramic substrate using a chemical bath deposition(CBD)method. They were annealed at various temperature and X-ray diffraction patterns were measured by X-ray diffractometer in order to study CdSe polycrystal structure. Using extrapolation method of X-ray diffraction patterns for the CdSe samples annealed in $N_2$ gas at $450^{\circ}C$ it was found hexagonal structure whose lattice parameters $a_0$ and $c_0$ were $4.302{\AA}$ and 7.014 ${\AA}$, respectively. Its grain size was about 0.3 ${\mu}m$. Hall effect on this sample was measured by Van der Pauw method and studied on carrier density and movility depending on temperature. From Hall data, the mobility was likely to be decreased by piezo electric scattering at temperature range of 33K and 200K, and by polar optical scattering at temperature range of 200K and 293K. We measured also spectral response, sensitivity$(\gamma)$, maximum allowable power dissipation and response time on these samples.

  • PDF

Full-scale measurements of wind effects and modal parameter identification of Yingxian wooden tower

  • Chen, Bo;Yang, Qingshan;Wang, Ke;Wang, Linan
    • Wind and Structures
    • /
    • v.17 no.6
    • /
    • pp.609-627
    • /
    • 2013
  • The Yingxian wooden tower in China is currently the tallest wooden tower in the world. It was built in 1056 AD and is 65.86 m high. Field measurements of wind speed and wind-induced response of this tower are conducted. The wind characteristics, including the average wind speed, wind direction, turbulence intensity, gust factor, turbulence integral length scale and velocity spectrum are investigated. The power spectral density and the root-mean-square wind-induced acceleration are analyzed. The structural modal parameters of this tower are identified with two different methods, including the Empirical Mode Decomposition (EMD) combined with the Random Decrement Technique (RDT) and Hilbert transform technique, and the stochastic subspace identification (SSI) method. Results show that strong wind is coming predominantly from the West-South of the tower which is in the same direction as the inclination of the structure. The Von Karman spectrum can describe the spectrum of wind speed well. Wind-induced torsional vibration obviously occurs in this tower. The natural frequencies identified by EMD, RDT and Hilbert Transform are close to those identified by SSI method, but there is obvious difference between the identified damping ratios for the first two modes.

An Analysis of Characteristics of Floor Dynamic Properties and Bang-machine Impact Force on Floating Floor Using System Analysis (시스템 해석을 이용한 뜬바닥구조에서의 바닥구조 동특성과 뱅머신의 충격력 특성 분석)

  • Mun, Dae-Ho;Park, Hong-Gun;Hwang, Jae-Seung;Hong, Geon-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.5
    • /
    • pp.390-398
    • /
    • 2014
  • Heavy-weight floor impact noise is directly related to the impact source and floor vibration property. Dynamic properties of the standard floating floor that is used in Korea was investigated using accelerance, acceleration energy spectral density(ESD), and structural modal test. In the standard floating floor, natural frequency was decreased by the finishing mortar mass and the damping ratio was increased. Bang-machine force spectrum acting on the concrete slab can be calculated using inverse system analysis. Impact force acting on concrete slab is changed by interaction of finishing mortar and resilient material. The amplitude of the bang-machine force spectrum was amplified in low frequency range(below 100 Hz), and over 100 Hz was decreased. Changed force spectrum influence to the response of structure vibration, so the heavy-weight floor impact noise level was changed.

Longitudinal motion characteristics of a ship according to the location (선내 위치에 따른 선박의 종운동 특성)

  • Kang, Il-Kwon;Kim, Min-Seok;Park, Byung-Soo;Hong, Jin-Keun;Jeong, Seong-Jae;Ham, Sang-Jun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.2
    • /
    • pp.147-154
    • /
    • 2012
  • In head sea, a ship has mainly the longitudinal motion such as vertical acceleration and pitch. In that case, the motion characteristics of a ship will have changed as the location different from each of place vertically and horizontally on board. The author carried out an experiment about the ship's vertical acceleration and pitch according to the location for the head sea, and analyzed the data with the aid of the statistical and spectral analyzing method to get the motion characteristics of the vessels. The response of vertical acceleration and pitch not deeply depend on the decks vertically, but displayed the relative big different value horizontally even if same deck. The biggest response of vertical acceleration and pitch among the accommodations was shown at scientist room, but the value of it not reached to the minimum requirement of ISO 2631-1 for working on board.

Development of Neural-Networks-based Model for the Fourier Amplitude Spectrum and Parameter Identification in the Generation of an Artificial Earthquake (인공 지진 생성에서 Fourier 진폭 스펙트럼과 변수 추정을 위한 신경망 모델의 개발)

  • 조빈아;이승창;한상환;이병해
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.439-446
    • /
    • 1998
  • One of the most important roles in the nonlinear dynamic structural analysis is to select a proper ground excitation, which dominates the response of a structure. Because of the lack of recorded accelerograms in Korea, a stochastic model of ground excitation with various dynamic properties rather than recorded accelerograms is necessarily required. If all information is not available at site, the information from other sites with similar features can be used by the procedure of seismic hazard analysis. Eliopoulos and Wen identified the parameters of the ground motion model by the empirical relations or expressions developed by Trifunac and Lee. Because the relations used in the parameter identification are largely empirical, it is required to apply the artificial neural networks instead of the empirical model. Additionally, neural networks have the advantage of the empirical model that it can continuously re-train the new recorded data, so that it can adapt to the change of the enormous data. Based on the redefined traditional processes, three neural-networks-based models (FAS_NN, PSD_NN and INT_NN) are proposed to individually substitute the Fourier amplitude spectrum, the parameter identification of power spectral density function and intensity function. The paper describes the first half of the research for the development of Neural-Networks-based model for the generation of an Artificial earthquake and a Response Spectrum(NNARS).

  • PDF