• Title/Summary/Keyword: spectral peak

Search Result 505, Processing Time 0.022 seconds

Wideband Flat Optical Frequency Comb Generated from a Semiconductor Based 10 GHz Mode-Locked Laser with Intra-cavity Fabry-Perot Etalon

  • Leaird, Daniel E.;Weiner, Andrew M.;Seo, Dongsun
    • Journal of IKEEE
    • /
    • v.18 no.1
    • /
    • pp.19-24
    • /
    • 2014
  • We report stable, wideband, flat-topped, 10 GHz optical frequency comb generation from a semiconductor-based mode-locked ring laser with an intra-cavity high finesse Fabry-Perot etalon. We demonstrate a stable 10 GHz comb with greater than 200 lines within a spectral power variation below 1 dB, which is the largest value obtained from a similar mode-locked laser in our knowledge. Greater than 20 dB of the spectral peak to deep ratio at 0.02 nm resolution, ~92 femtosecond timing jitter over 1 kHz to 1 MHz range, and non-averaged time traces of pulses confirm very stable optical frequency comb lines.

The Photographic Characteristics and Stability on the Solvents of Spectral Sensitizing Dye (사진특성과 분광증감색소의 용매에 대한 안정성)

  • Kim, Yeoung-Chan;Kim, Il-Chool
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.199-203
    • /
    • 1999
  • The symmetric benzoxazolo carbocyanine is of industrial importance as green-sensitizing dye in the spectral sensitization of emulsion microcrystals in positive paper and negative film-making. The stability on the solvents of benzoxazolo carbocyanine dye was measured by UV-Vis spectrophotometer, and then all of solvents were stabilized sensitizer. The maximum absorption peak range in methanol, acetonitrile, acetone, DMF, dichloromethane, chloroform solvents was $501nm{\sim}511nm$. But it was identified that only methanol can be used to photographic emulsion. The photographic characteristics have contrast of 2.8, speed of 50-55$(lux{\cdot}sec)^{-1}$, fog of 0.07-0.08, respectively.

The Synthesis of Green-Sensitizing Dye for Photographic Emulsion (사진유제용 Green-Sensitizing Dye의 합성)

  • Kim, Yeoung-Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.57-64
    • /
    • 1997
  • The symmetric naphthothiazolo carbocyanine is of industrial importance as green-sensitizing dye in the spectral sensitization of emulsion microcrystals in negative film-making. In this study, green-sensitizing dye was prepared by the reaction of 2-methyl-3-sulfopropyl-5-phenyl-benzoxazolium(inner salt) with triethyl orthoacetate in the presence of triethylamine. The product was identified by using various analytical tools such as Elemental analyzer, IR spectrophotometer, UV-Vis spectrophotometer, $^1H$-NMR spectrometer, TGA and DSC. The maximum absorption peak in methanol solvent was 502nm. Therefore, it was concluded that benzoxazolo carbocyanine dye can be used as green-sensitizing dye for the spectral sensitization of photographic emulsion.

Spectral Characteristics of 50 GHz FSR Etalon for Wide-band DWDM Application

  • Kim, Jong-Deog;Moon, Jong-Tae
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.104-107
    • /
    • 2004
  • The periodic transmission spectrum of a solid etalon for wide-band capability is analyzed both theoretically and experimentally. In the transmission spectrum with an incident area of a photodetector, the peak wavelength and transmittance are deeply dependent on the incident angle and the divergence angle of the input laser beam. A thermal adjustment for a solid etalon is an optional way to control the transmission spectrum instead of the inefficient fine-angle alignment. In the result, we present the deviations of free spectral range (FSR) by the change in angle and temperature over wide wavelength range.

Resonance Characteristics of THz Metamaterials Based on a Drude Metal with Finite Permittivity

  • Jun, Seung Won;Ahn, Yeong Hwan
    • Current Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.378-382
    • /
    • 2018
  • In most previous investigations of plasmonic and metamaterial applications, the metallic film has been regarded as a perfect electrical conductor. Here we demonstrate the resonance characteristics of THz metamaterials fabricated from metal film that has a finite dielectric constant, using finite-difference time-domain simulations. We found strong redshift and spectral broadening of the resonance as we decrease the metal's plasma frequency in the Drude free-electron model. The frequency shift can be attributed to the effective thinning of the metal film, originating from the increase in penetration depth as the plasma frequency decreases. On the contrary, only peak broadening occurs with an increase in the scattering rate. The metal-thickness dependence confirms that the redshift and spectral broadening occur when the effective metal thickness drops below the skin-depth limit. The electromagnetic field distribution illustrates the reduced field enhancement and reduced funneling effects near the gap area in the case of low plasma frequency, which is associated with reduced charge density in the metal film.

Input Sequence Selection and Lookup Table for PAPR Reduction in OFDM Systems

  • Foomooljaroen, P.;Fernando, W.A.C.
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1928-1931
    • /
    • 2002
  • Orthogonal Frequency Division Multiplexing or OFDM is a form of multi-carrier modulation technique. High spectral efficiency, robustness to channel fading, immunity to impulse interference, uniform average spectral density, capability of handling very strong echoes and less on linear distortion are among the favorite properties of OFDM. Even though there are many advantages of OFDM, t has two main drawbacks: high Peak to Average Power Ratio (PAPR) and frequency of offset. In this paper, the issue of PAPR in OFDM is discussed. A new algorithm is proposed to reduce PAPR by selecting the input sequences property using a lookup table.

  • PDF

The effect of the vertical excitation on horizontal response of structures

  • Ghaffarzadeh, Hosein;Nazeri, Ali
    • Earthquakes and Structures
    • /
    • v.9 no.3
    • /
    • pp.625-637
    • /
    • 2015
  • It is usual in design and assessment of structures to isolate the effects of vertical and horizontal excitations by ignoring their coupling effects. In this situation, total structural response is obtained by employing the well-known combination rules whereby independent assumed response components of earthquakes are combined. In fact, the effects of the simultaneity of the ground motion components are ignored. In this paper, the effect of vertical excitation on horizontal response of structures, the coupling of vertical and horizontal responses, has been evaluated. A computer program is prepared to perform nonlinear dynamic analysis based on the derived governing equations of coupled motions. In the case of simultaneous excitation the results show significant increases in spectral displacement in some periods of vibration in comparison to only horizontally excited systems. Moreover, whenever ratio of the vertical peak ground acceleration to horizontal one become larger, the significant increase in horizontal spectral displacements are observed.

A Study on the Effects of the Optical Characteristics of Backlight Sources on the Photo Leakage Currents of a-Si:H Thin Film Transistor (비정질 실리콘 TFT의 광누설 전류에 Backlight 광원의 광학적 특성이 미치는 영향에 대한 연구)

  • Im, Seung-Hyeok;Kwon, Sang-Jik;Cho, Eou-Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.9
    • /
    • pp.844-847
    • /
    • 2008
  • The photo leakage currents of a conventional hydrogenated amorphous silicon(a-Si:H) thin film transistor(TFT) were investigated and analyzed in case of illumination from various light sources such as halogen lamp, cold cathode fluorescent lamp(CCFL) backlight, and white light emitting diode(LED) backlight. The photo leakage characteristics showed the apparent differences in the leakage level and in the $I_{on}/I_{off}$ ratio in spite of the similar luminances of light sources. This leakage level is expected to be related to the wavelength of the lowest intensity peak from the spectral characteristics of light sources.

Generating a True Color Image with Data from Scanning White-Light Interferometry by Using a Fourier Transform

  • Kim, Jin-Yong;Kim, Seungjae;Kim, Min-Gyu;Pahk, Heui Jae
    • Current Optics and Photonics
    • /
    • v.3 no.5
    • /
    • pp.408-414
    • /
    • 2019
  • In this paper we propose a method to generate a true color image in scanning white-light interferometry (SWLI). Previously, a true color image was obtained by using a color camera, or an RGB multichannel light source. Here we focused on acquiring a true color image without any hardware changes in basic SWLI, in which a monochrome camera is utilized. A Fourier transform method was used to obtain the spectral intensity distributions of the light reflected from the sample. RGB filtering was applied to the intensity distributions, to determine RGB values from the spectral intensity. Through color corrections, a true color image was generated from the RGB values. The image generated by the proposed method was verified on the basis of the RGB distance and peak signal-to-noise ratio analysis for its effectiveness.

Compressive sensing-based two-dimensional scattering-center extraction for incomplete RCS data

  • Bae, Ji-Hoon;Kim, Kyung-Tae
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.815-826
    • /
    • 2020
  • We propose a two-dimensional (2D) scattering-center-extraction (SCE) method using sparse recovery based on the compressive-sensing theory, even with data missing from the received radar cross-section (RCS) dataset. First, using the proposed method, we generate a 2D grid via adaptive discretization that has a considerably smaller size than a fully sampled fine grid. Subsequently, the coarse estimation of 2D scattering centers is performed using both the method of iteratively reweighted least square and a general peak-finding algorithm. Finally, the fine estimation of 2D scattering centers is performed using the orthogonal matching pursuit (OMP) procedure from an adaptively sampled Fourier dictionary. The measured RCS data, as well as simulation data using the point-scatterer model, are used to evaluate the 2D SCE accuracy of the proposed method. The results indicate that the proposed method can achieve higher SCE accuracy for an incomplete RCS dataset with missing data than that achieved by the conventional OMP, basis pursuit, smoothed L0, and existing discrete spectral estimation techniques.