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1 |  INTRODUCTION

An accurate and robust scattering-center extraction (SCE) is the 
main concern of target recognition and classification, as well 
as radar signal processing, because scattering centers (SCs) on 
a target can provide a rich description of the scattering mecha-
nism of the target, even in small dimensions [1,2]. As a conven-
tional approach for performing two-dimensional (2D) SCE, we 
consider the following two types of well-known discrete spec-
tral estimation (DSE) techniques [3]: Fourier transform (FT)-
based parametric techniques, such as CLEAN [4] and RELAX 
[5], and reliable superresolution techniques, such as multiple 
signal classification (MUSIC) [6] and estimation of signal 

parameters via rotational invariance techniques (ESPRIT) [7]. 
The aforementioned DSE techniques are typically subject to the 
condition that uniformly sampled complete radar cross-section 
(RCS) data are required for successful SCE. However, accord-
ing to the modern inverse synthetic aperture radar (ISAR) sys-
tem that employs active phased array radar techniques [8], the 
ISAR system in the tracking mode must switch its beam to sev-
eral directions to continuously and simultaneously capture mul-
tiple targets. For each target, because of the sparse sampling, 
this can result in missing data in the collected RCS dataset. If 
data are missing, the conventional DSE techniques generally 
fail to extract SCs under such a nonuniform and incomplete 
RCS dataset [9].
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Compressive-sensing (CS)-based sparse-recovery algo-
rithms (SRAs)[10] may be good candidates for addressing 
this problem. This is because, compared with the well-known 
Nyquist sampling theory, they can reduce the amount of data 
required to faithfully reconstruct a signal. Because a high-fre-
quency radar signal model, which is called the geometrical 
theory of diffraction (GTD) model [11], can be expressed as 
the summation of a few sparsely distributed SCs on a target, 
we can extract SCs from the undersampled incomplete data-
set resulting from the missing data. SRAs can be divided into 
two major classes: the convex relaxation method (CRM) and 
the greedy pursuit method (GPM)[12]. In the case of CRM, 
there are two typical methods for l1-norm optimization: basis 
pursuit (BP) and basis pursuit denoising [12]. However, in 
the case of GPM, there are different types of greedy algo-
rithms, such as matching pursuit (MP), weak-MP, orthogonal 
matching pursuit (OMP), and least squares (LS) OMP [12–
14]. Among the greedy algorithms, OMP is a representative 
algorithm that shows a relatively smaller recovery error than 
those of other GPM-based algorithms [12]. However, the main 
disadvantage of the OMP algorithm is that its accuracy in 
terms of radar image reconstruction is considerably sensitive 
to off-grid SCs and the number of SCs (nSC) [15]. Another 
new approach to yielding a sparse solution is the Bayesian 
CS, which basically adopts the relevance vector machine, in 
which CS has been considered from the Bayesian perspective 
[16]. In addition, the smoothed L0 (SL0) algorithm for CS 
reconstruction was proposed using a smooth measure of the 
l0-norm by introducing a sequence of smoothed functions to 
approximate the l0-norm [17,18]. While most research works 
[19–25] were performed on CS-theory-based radar image re-
construction, the capability of SCE for incomplete RCS data-
sets with missing data, especially for 2D SCE, has yet to be 
carefully and sufficiently studied.

This study aims to establish a reliable 2D SCE algo-
rithm to enhance the SCE accuracy even when using an in-
complete RCS dataset. Unlike 1D SCE [26], the adaptively 
sampled 2D grid suitable for sparse recovery is devised in 
the proposed method to substantially reduce the compu-
tational cost of 2D SCE. First, we generate an adaptively 
sampled grid with coarse sampling and partially fine sam-
pling. This adaptive sampling can help significantly reduce 
the computational complexity of the proposed method as 
compared with a fully sampled fine grid. Subsequently, we 
implement the coarse estimation of SCs using an lp-norm 
optimization technique coupled with a general peak-find-
ing algorithm (PFA), in which the optimization technique 
uses the obtained 2D grid with adaptive discretization to 
create its own dictionary. Finally, we further improve the 
estimation accuracy of SCs using the OMP algorithm from 
an adaptively sampled Fourier dictionary. In the next sec-
tion, we will describe the proposed method for 2D SCE in 
detail.

2 |  PROPOSED METHOD

2.1 | Signal modeling

According to the point-scatterer model, the backscattered 
field data from L SCs at various frequencies f and look angles 
� can be expressed as [27] follows:

where ai denotes the amplitude of the ith SC at (xi, yi), 
f x = f cos �, and f y = f sin �. For simplicity, we consider an 
undamped exponential model without the angle-dependence 
or frequency-dependence term included in the GTD model. If 
the frequency bandwidth is sampled M times and the angular 
width sampled N times, (1) can be rewritten as follows:

where f x
m
= f x

0
+ mΔf x(m=0, 1, ..., M−1) and 

f
y
n = f

y

0
+ nΔf y (n = 0, 1, ..., N−1). Without any loss of 

generality, we can set f x
0
= f

y

0
=0 to obtain the following:

where Rx = c∕(2Δf x) and Ry = c∕(2Δf y) denote the maximum 
unambiguous ranges in the down-range and cross-range direc-
tions, respectively. Therefore, Δf x and Δf y should be selected 
such that the maximum unambiguous ranges in both the direc-
tions include the entire target without resulting in image alias-
ing. If the 2D radar image domain is fully discretized using a 2D 
Q × R grid (Q > M and R > N), such as qΔx(q = 0, 1, ..., Q−1)  
in the down range and rΔy(r=0, 1, ..., R−1) in the cross 
range, (3) can be rewritten as follows:

where Δx and Δy denote the x- and y-directional sampling grid 
widths for sparse recovery, respectively. Notably, the grid widths 
are sufficiently small to separate closely distributed SCs, namely 
Δx < ΔxFb and Δy < ΔyFb, where ΔxFb and ΔyFb denote the Fb 
each in the down-range and cross-range domains, respectively. The 
resulting es

mn
 is merely the well-known 2D discrete FT. Therefore, 

(4) can be rewritten as the following matrix equation [28]:

(1)es
f x,f y =

L∑

i=1

ai exp
(
−j4�f x∕c ⋅xi

)
exp

(
−j4�f y∕c ⋅yi

)
,

(2)es

f x
m

,f
y
n

=

L∑

i=1

ai exp

(
−j2�

2f x
m

c
⋅xi

)
exp

(
−j2�

2f
y
n

c
⋅yi

)
,

(3)es
mn

=

L∑

i=1

ai exp

(
−j2�m ⋅

xi

Rx

)
exp

(
−j2�n ⋅

yi

Ry

)
,

(4)
es

mn
=

Q−1∑

q=0

R−1∑

r=0

aqr exp

(
−j

2�

Q
m ⋅q

)
exp

(
−j

2�

R
n ⋅r

)
,

m=0, 1, ..., M−1, n=0, 1, ..., N−1,

(5)[E]M×N =
[
Wx

]
M×Q

[A]Q×R

[
W

T

y

]

R×N
,
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where E =
(
es

mn

)
 denotes an M×N matrix representing the 2D 

RCS dataset, A =
(
aqr

)
 a Q×R amplitude matrix representing 

the 2D radar image, Wx an M×Q matrix representing the x-di-
rectional Fourier dictionary, and Wy an N×R matrix represent-
ing the y-directional Fourier dictionary. The linear equations in 
(5) represent an underdetermined system and have an infinite 
number of solutions because Q>M and R>N. However, be-
cause the amplitudes of the SCs are sparsely distributed over 
a small part of the 2D radar image domain, we can solve this 
problem by minimizing the l0-norm of A as follows:

where ‖ ⋅‖0 denotes the l0-norm, e = vec(E) an MN × 1 vector repre-
senting the vectorized RCS data, � = vec(A) a QR × 1 vector repre-
senting a vectorized radar image, and W = Wy⊗Wx an MN × QR 
matrix obtained by the Kronecker product of Wx and Wy. In (6), 
vec(•) of a matrix refers to the vectorization of the matrix by stack-
ing its columns in sequence. Using the conventional OMP algorithm, 
one can directly extract 2D SCs from (6) by identifying a suboptimal 
sparse solution using a residual. Therefore, once � is solved, the 2D 
locations and the corresponding amplitudes can be easily obtained by 
mapping the 1D vectorized solutions onto the 2D parameter space.

2.2 | Generation of 2D adaptive grid

To separately detect the closely located SCs, the 2D param-
eter space (down range and cross range) should be sampled 

more finely, resulting in a significant increase in the size of a 
dictionary. To mitigate the computational complexity of the 
2D optimization problem, we devise an adaptively sampled 
grid with a combination of coarse sampling and partially fine 
sampling. First, we generate a Q1×R1 coarse grid with sam-
pling widths Δx1 and Δy1 such that Δx1 ≫ Δx and Δy1 ≫ Δy 
[see Figure 1A], namely, Q1 ≪ Q and R1 ≪ R. The main role 
of the coarse grid is to guarantee the underdetermined linear 
system of the equation in (6) to provide unique and sparsest 
solution. Considering robust performance and computational 
complexity, we recommend that the sampling widths satisfy 
0.5ΔxFb ≤ Δx1 ≤ ΔxFb and 0.5ΔyFb ≤ Δy1 ≤ ΔyFb, both of 
which are, respectively, equivalent to M ≤ Q1 ≤ 2M and 
N ≤ R1 ≤ 2N for the size of the coarse grid. Subsequently, 
to obtain locally fine grids with sampling widths Δx and Δy, 
the following steps are presented:

• Step 1: Extract the initial locations of the SCs {(x�
i
,y�

i
)}

L1

i=1
 

in Figure 1B by directly solving the l0-norm optimization 
problem presented in (6) using the conventional OMP al-
gorithm that uses the Q1×R1 coarse grid, rather than using 
the Q × R fine grid. Notably, an MN×Q1R1 coarsely sam-
pled Fourier dictionary obtained from the 2D coarse grid 
can accelerate the computational speed of the OMP algo-
rithm, resulting in performance degradation in terms of 
estimation accuracy.
• Step 2: Generate 2D finely sampled grids with sampling 
widths Δx and Δy on the basis of the extracted SCs in Step 
1 [see Figure 1C]. Each fine grid, which is of rectangular 

(6)
(
P0

)
: min

�

‖‖�‖‖0
subject to e=W�,

F I G U R E  1  Generation of an 
adaptively sampled grid. (A) 2D coarse grid. 
(B) Initial locations of the SCs extracted 
using the conventional OMP algorithm. (C) 
Locally fine grids. (D) Adaptively sampled 
grid obtained from the combination of the 
coarse grid (see Figure 1A) and locally fine 
grids (see Figure 1C)
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shape, is obtained using each SC, and the ranges from 
(x�

i
−ΔxFb) to (x�

i
+ΔxFb) in the down-range direction and 

from (y�
i
−ΔyFb) to (y�

i
+ΔyFb) in the cross-range direction. 

In the case of overlapping grid points occurring because 
of the overlapping of more than two grids, each resulting 
from the separation distance of less than Fb, the other re-
dundant grid points should be discarded such that only one 
grid exists in the overlapping regions. Finally, the adap-
tively sampled grid that is applied to the coarse-estima-
tion procedure (see Section 2.3) in the proposed method is 
created by combining the coarse grid with the locally fine 
grids (see Steps 1 and 2), as depicted in Figure 1D.

2.3 | Coarse estimation of 2D SCs

From (6), the coarse-estimation procedure for a 2D SCE 
using the proposed method can be stated as follows:

• Step 1: Generate an initial dictionary using the 2D grid 
with adaptive sampling obtained in Section 2.2. Notably, 
each grid point on the 2D grid produces a single MN × 1 
WA basis function belonging to WA.
• Step 2: Calculate � using the dictionary WA in Step 1 by 
solving the lp-norm optimization problem (Pp) as follows:

where � denotes the vectorization of the amplitudes at all 
the sampled 2D spatial positions of the adaptive grid; in 

addition, 0<p≤1, and �0 denotes the error tolerance with 
a low positive value. To solve the problem Pp in this study, 
we adopt the method of iteratively reweighted least square 
(IRLS) that minimizes the weighted LS via iterative re-
weighting [10,29].

• Step 3: Normalize the obtained from Step 2 as 
�� =�∕max |�|, and apply a thresholding operator using a 
threshold level �th to the normalized � as follows:

• Step 4: Extract the vectorized locations of the SCs from 
�′

th
 by using a general 1D peak-finding algorithm (PFA). 

Subsequently, the 2D locations {(x��
i

,y��
i

)}
L2

i=1
 can be simply 

obtained from the vectorized locations.
• Step 5: Generate the following MN×L2 dictionary 
(WN) by using the extracted {(x��

i
,y��

i
)}

L2

i=1
 from Step 4 as 

follows:

where the basis function f (x′′
i

,y′′
i

) is defined as follows:
(7)(Pp): min

�

‖‖�‖‖
p

p
subject to ‖‖e−WA�

‖‖
2

2
≤�0,

(8)�
�
th
=

{
��

th
=��, if��≥ �th

��
th
=0, otherwise.

(9)WN = [f (x��
1

,y��
1

) f (x��
2

,y��
2

) ⋯ f (x��
L2

,y��
L2

)],

(10)

f (x��
i

,y��
i

) = [w
i
(0, 0), w

i
(1, 0), ..., w

i
(M−1, 0),

w
i
(0, 1), w

i
(1, 1), ..., w

i
(M−1, 1), ... ,

w
i
(0, N−1), w

i
(1, N−1), ..., w

i
(M−1, N−1)]

T
,

i=1, 2, ..., L2,

F I G U R E  2  Comparative results of 2D 
SCE for three off-grid SCs at SNR = 20 dB 
( fc = 12 GHz, BW = 720 MHz, and 
� = −1.7189◦ to 1.4324◦). (A) Original 
SCs. (B) FT-based ISAR image. (C) 
IRLS + PFA. (D) Proposed method. Circle 
in white: original SCs. X marker in blue: 
estimated SCs
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 where w
i
(m, n) = exp [− j2�

(
m ⋅x��

i
∕Rx+n ⋅y��

i
∕Ry

)
], 

m = 0, 1, …, M − 1, n = 1, 2, …, N − 1.
Generally, the direct extraction of SCs by using PFA 

cannot guarantee reliable SCE, although the amplitudes of 
the SCs can also be extracted using Step 4. It is because 
PFA easily suffers from noisy environments because of the 
undesired local peaks due to side lobes or noises, although 
αth is considered as well. For example, Figure 2 depicts the 
extracted three SCs (X marker in blue) obtained via direct 
SCE by using IRLS coupled with only PFA from Steps 1 
to 4, and those using the proposed method when three SCs 
are arranged alongside one another (see Figure 2A). Here, 
the range profile (shown as the dashed line in black) is ob-
tained by cutting the conventional FT-based ISAR image 
(see Figure  2B) along the down-range direction. Clearly, 
the estimation accuracy of the amplitudes (see Figure 2C) 
is inferior to that obtained using the proposed method (see 
Figure 2D) irrespective of the correct estimation of the lo-
cations (see Figure  2C). To achieve further improvement 
in the SCE accuracy, we must perform an additional pro-
cedure for the fine estimation of the amplitudes when ex-
tracting the desired locations from the redundant locations 
of the SCs in Step 4 simultaneously. Therefore, we gener-
ate an adaptively sampled Fourier dictionary WN indicated 
in Step 5 as the medium to establish a link between the 
coarse-estimation procedure and next fine-estimation step 
in Section 2.4.

2.4 | Fine estimation of 2D SCs

The fine-estimation procedure using WN to improve the SCE 
accuracy can be described as follows:

• Step 1: Assume k  =  1. Estimate the location (x̂′′
1

, ŷ′′
1

) 
using (11), where the initial residual r0 = e. One has the 
following:

 where {f (x��
i

, y��
i

)}
L2

i=1
 belong to WN. Notably, the extracted 

basis function [ f (x̂′′
1

, ŷ′′
1

)] corresponding to (x̂′′
1

, ŷ′′
1

) is not 
involved in Step 4 of the estimation process.

•Step 2: Estimate the amplitudes �1 by solving the follow-
ing optimization problem, where the initial �0 denotes an 
empty matrix:P2 [�̂�′′

1
, �̂�′′

2
, ..., �̂�′′

k
]T

 where �
k = [�k−1 f (x̂��

k
, ŷ��

k
)] and 𝜎k =

[
𝜎k−1

�̂���
k

]
=

[�̂�′′
1

, �̂�′′
2

, ..., �̂�′′
k

]T. The aforementioned optimization problem 
can then be solved using the least-square (LS) estimation in 
(13) as follows:

• Step 3: Compute the residual r1 from (14) by using  x̂′′
1

, ŷ′′
1
 

and �̂�′′
1
 obtained from Steps 1 and 2.

•Step 4: Assume k = 2. Estimate location (x̂′′
2

, ŷ′′
2

) using 
(11) by using the residual r1 obtained from Step 3. 
Obviously, the extracted basis function [ f (x̂′′

2
, ŷ′′

2
)] at this 

stage is not involved in the next estimation process in (11).
• Step 5: Calculate �2 from (13) by using the basis functions {

f (x̂��
i

, ŷ��
i

)
}2

i=1
 corresponding to 

{
(x̂��

i
, ŷ��

i
)
}2

i=1
 obtained from 

Steps 1 and 4. Notably, the previously estimated amplitude 
�1 in Step 2 is reestimated in this step such that the column 
space of �2 should be orthogonal to residual r1. Therefore, 
the reestimation process for obtaining �k at each iteration 
enables us to accomplish further improvement in determin-
ing the accuracy of the amplitudes of the SCs as compared 
with the direct estimation of SCs by using the PFA, as de-
picted in Figure 2.
•Step 6: Compute residual r2 from (14) by using {
(x̂��

i
, ŷ��

i
)
}2

i=1
 and �2 obtained from Steps 1, 4, and 5.

•Step 7: Repeat Steps 1–7 until the following cost function 
C between the (k − 1)th and kth iterations is below some pre-
defined small quantity �. Namely, unlike most GPM-based 
conventional greedy algorithms, which generally adopt the 
stopping rule (Cg) using only the residual (ie, Cg =∥ rk ∥2<𝛿),  
we decide when to terminate the iterations by checking the 
following relative change in the cost function:

This stopping rule in C allows us to determine the thresh-
old more easily than Cg for practical convergence. Regarding 
the stopping criterion using the relative change, the selection 
of 0.001 ≤ δ ≤ 0.01 is recommended to terminate the itera-
tions in the fine estimation of the proposed method. Obviously, 
the recommended threshold can be slightly adjusted depend-
ing on the desired accuracy of the optimal solution. Therefore, 
if the procedure is implemented using L3 iterations satisfying 
(15), {(x̂��

i
, ŷ��

i
)}

L3

i=1
 and {�̂���

i
}

L3

i=1
 are the estimated locations and 

(11)(x̂��
k

,ŷ��
k

)= max
(x��

i
,y��

i
)

|||f (x��
i

,y��
i

)H
⋅rk−1||| , i=1,2, … ,L2,

(12)
(
P2

)
: min

ak

‖‖‖e−�
k
�

k‖‖‖
2

2
,

(13)�
k =

((
�

k
)H

�
k
)−1 (

�
k
)H

e.

(14)rk = e−

k∑

i=1

�̂�
��
1

exp
[
−j2𝜋(m ⋅ x̂��

i
∕Rx+n ⋅ ŷ��

k
∕Ry)

]
.

(15)C =
|||
‖‖‖rk‖‖‖2

−
‖‖‖rk−1‖‖‖2

||| < 𝛿.
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amplitudes of the SCs, respectively. Owing to the fine-estima-
tion procedure presented in Steps 1–7, the advantages of the 
proposed method can be summarized as follows: First, nSC can 
be automatically determined using the residual and the stopping 
criterion presented in (15) because the desired basis functions, 
as well as the locations of the SCs, can be efficiently extracted 
from the redundant WN via an iterative search by the largest 
projection, where the inner product between a residual and the 
basis function is maximized. Second, the estimation accuracy 
of the amplitudes of the SCs can be further improved by using 
the reestimation process with the LS estimation presented in 
(13). Finally, the size of the adaptively sampled Fourier dic-
tionary, that is, MN × L2, is substantially smaller than that of 
the original Fourier dictionary, MN × QR, as L2 ≪ QR in gen-
eral. This can result in a significantly reduced search space of 
the locations in (11) for the fine-estimation process. Therefore, 
using the additional fine-estimation procedure in the proposed 
method, an accurate estimation of the scattering properties, 
namely, locations and amplitudes can be achieved as compared 
with that achieved using only PFA from the reconstructed ISAR 
image; however, it results in a slight increase in the computa-
tional complexity.

2.5 | Determination of lp-norm for the 
proposed method

To implement 2D SCE in the proposed method, it is first 
necessary to determine the design parameter p-norm, as de-
fined in (7). For example, Figure 3 depicts the SCE error rate 
ERSCE for a variation in the lp-norm when four closely located 
SCs of equal amplitude are considered for several distances 
(Δx

d
 and Δy

d
). ERSCE is defined as follows:

where Δrx and Δry denote the threshold distances for distin-
guishing the inaccurately estimated 2D SCs. Specifically, 
ERSCE= 0 means that all the extracted SCs ({(x̂��

i
, ŷ��

i
)}L

i=1
) are 

successfully identified within the thresholds [≤ (±Δrx, ±Δry)];  
otherwise, ERSCE= 1. This implies that if at least one more SC is 
incorrectly detected beyond the thresholds [> (±Δrx, ±Δry)], 
ERSCE is set to 1. In this experiment, to determine the separabil-
ity of the extracted 2D SCs, the thresholds ±Δrx and ±Δry are 
set to ± 0.5Δx

d
 and ± 0.5Δ

y

d
, respectively, for each case. As de-

picted in Figure 3B, the SCE accuracies for all the cases deteri-
orate gradually for the increased P values. Specifically, when P 
increases from 0.6 to 1.0, severe performance degradation can 
be observed as Δd decreases. Contrarily, no noticeable deterio-
ration in accuracy is observed for most cases when p increases 
to a value below approximately 0.6, although the accuracy 
fluctuates slightly. Notably, the l1-norm minimization can be 
inadequate for extracting the closely located SCs in terms of 
separability. Therefore, the selection of p ≤ 0.6 is adequate for 
performing efficient 2D SCE using the proposed method. In 
this study, with a view to achieving robust SCE accuracy, we 
used p = 0.3 for all the experimental results.

3 |  RESULTS

3.1 | 2D SCE using incomplete RCS dataset

To examine the 2D SCE capability of the proposed method 
in terms of missing data, we used an incomplete RCS data-
set by eliminating randomly selected data. Namely, we 
randomly selected row and column positions in the 2D 
complete RCS dataset; subsequently, we eliminated all the 
RCS data belonging to the selected row and column posi-
tions. Therefore, we calculated the number of missing data 
points as pm =

(
M×N−

(
M−M�

)
×
(
N−N�

))
∕ (M×N) , 

where M and N denote the number of rows and columns in 
the complete 2D RCS dataset, respectively, and M′ and N′ the 

(16)ERSCE =

{
0, if

[(
x̂��

i
, ŷ��

i

)
−
(
xi, yi

)]
≤
(
±Δrx, ±Δry

)

1, otherwise, i=1, 2, ..., L,

F I G U R E  3  ERSCE with respect to the 
p values. (A) Four closely located SCs. (B) 
ERSCE versus p at SNR = 20 dB (= 12 GHz, 
BW = 720 MHz, � = −1.7189◦ to 1.4324◦,  
ΔxFb = ΔyFb = 0.2083 m, and M = N = 12). 
Case 1: Δx

d
= 0.6ΔxFb and Δy

d
= 0.6ΔyFb,  

Case 2: Δx
d
= 0.7ΔxFb and Δy

d
= 0.7ΔyFb,  

Case 3: Δx
d
= 0.8ΔxFb and Δy

d
= 0.8ΔyFb,  

Case 4: Δx
d
= 0.9ΔxFb and Δy

d
= 0.9ΔyFb, 

Case 5: Δx
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= 1.0ΔxFb and Δy

d
= 1.0ΔyFb
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number of deleted rows and columns, respectively. Notably, 
the generation of the adaptively sampled grid and the coarse- 
and fine-estimation procedures described in Sections 2.2, 2.3, 
and 2.4 are directly applicable to the incomplete RCS data 
case by using the (M – M′) (N –N′) × 1 vectorized �, as well 
as the two redundant dictionaries WA and WN with (M– M′)  
(N –N′) × 1 basis functions, as is the case for the complete 
RCS data.

First, we assume that seven off-grid SCs of equal amplitude 
are distributed in a 2D image domain (circle in Figure 4A), 
where the x- and y-grid width are equal to ΔxFb and ΔyFb, re-
spectively. Because of the closely located six SCs, the con-
ventional FT-based ISAR image cannot separate all the SCs. 
Figure  4B depicts an ISAR image when using the incom-
plete RCS data with pm = 55.5%. Notably, the resultant ISAR 
image is generally corrupted, and a large number of side lobes 
with high levels are observed in the image domain as well. 
Therefore, to resolve all the SCs, an adaptively sampled grid 
in Figure 4C is generated and used for the proposed method.

Considering the tradeoff between the SCE accuracy and 
computational complexity, we used the M × N coarse grid 
with Δx1 =ΔxFb andΔy1 =ΔyFb, along with the locally fine 
grids with Δx = ΔxFb∕10 and Δy = ΔyFb∕10, for the adap-
tively sampled grid. For OMP, BP, and SL0, a fully sampled 
fine grid was generated by discretizing the image domain 
with Δx=ΔxFb∕10 and Δy=ΔyFb∕10. The PFA described in 
Section 2.3 was applied to the estimation of SCs for both BP 
and SL0. The SCs extracted using each method for the incom-
plete RCS data are depicted in Figures 4D–4J. For the three 
DSE methods, namely, CLEAN, RELAX, and ESPRIT, the 
conventional linear interpolation (LIP) method was applied 
to the missing data in advance so as to provide a uniform 
dataset before using the incomplete RCS dataset for 2D SCE. 
Particularly, for the two FT-based DSE methods, namely, 
CLEAN and RELAX, we also applied zero padding 100 
times to the uniform dataset. This is typically done because 
of the need for sufficient zero padding to obtain an accurate 
estimate of closely located SCs in their own SCE procedures. 
Nevertheless, from Figure 4, it is evident that the three DSE 
methods cannot accurately resolve all SCs as compared with 
OMP, BP, SL0, and the proposed method. Compared with 
OMP and the proposed method, the locations of some SCs 
for BP and SL0 were not properly estimated because of the 
limitation of the PFA, as described in Figure  2. Although 
OMP is capable of extracting most SCs close to the original 
SCs (see Figure  4G), its accuracy is inferior to that of the 
proposed method (see Figure 4J). In addition, when ERamp 
is defined as in (17), the comparative amplitude accuracy re-
sults obtained for each SRA are represented in Table 1. One 
has the following:

where ar
n
 and aest

n
 denote the real and estimated amplitudes of the 

nth SC, respectively. In this experiment, instead of using PFA, 
we applied the same fine estimation using the OMP procedure 
in Section 2.4 for both BP and SL0 to overcome the drawback of 
PFA. Although BP and SL0 use the fine-estimation procedure for 
SCE, the proposed method clearly surpassed both the methods, (17)ERamp =

1

N

N∑

n=1

(||a
r
n
||− ||a

est
n
||
)2

,

F I G U R E  4  Comparative results of 2D SCE for seven off-grid 
SCs ( fc = 12 GHz, BW = 562.5 MHz, � = −1.3429◦ to 1.1638◦, 
ΔxFb =ΔyFb =0.2667 m, and M = N = 15). (A) Original FT-based ISAR 
image using the complete RCS data. (B) FT-based ISAR image using 
the incomplete RCS data with pm = 55.5%. (C) Adaptively sampled 
grid. (D) CLEAN + LIP. (E) RELAX + LIP. (F) ESPRIT + LIP. (G) 
OMP. (H) BP. (I) SL0. (J) Proposed method. Circle in black: original 
SCs. X marker in red: estimated SCs [Colour figure can be viewed at 
wileyonlinelibrary.com]
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as well as the OMP procedure, owing to the proposed coarse- and 
fine-estimation procedures using the adaptively sampled grid, as 
shown in Table 1. The average computation time for each method 
for 2D SCE using the incomplete dataset is listed in Table 2.

Subsequently, to quantitatively evaluate the SCE accuracy 
of each method from the incomplete RCS dataset, we define 
the following performance measure in the 2D image domain:

where |I(m, n)| denotes the magnitude of an ISAR image 
with original SCs and |Ir(m, n)| the magnitude of an ISAR 
image regenerated from the estimated SCs. Moreover, Ir is 
obtained from the regenerated 2D RCS dataset by substitut-
ing the estimated SCs in (2). A total of 25 SCs with random 
amplitudes ranging from 0.5 to 1 are assumed to be randomly 
distributed in the 2D image domain, where the x-grid width 
=ΔxFb and the y-grid width = ΔyFb, as depicted in Figure 4. 
Subsequently, all the on-grid SCs are perturbed by (±�x, ±�y) 
  =  (±5%, ±5%). The reconstruction accuracies of all the 
methods are compared with one another with respect to pm 
are compared in Figure 5. In this experiment, the average re-
sult for 100 independent realizations per pm was presented 
when nSC = 25 was used for the 2D SCE of each method. 
In addition, two types of interpolations—nearest-neighbor 
interpolation and spline interpolation—were additionally 
considered for 2D SCE in RELAX. The fine-estimation pro-
cedure in Section 2.4 was also applied to both BP and SL0 
for 2D SCE. As pm increased, the performance of the FT-
based RELAX was significantly degraded, as expected. This 
phenomenon proves that the FT-based operation cannot deal 
with nonuniformly sampled datasets caused by missing data, 
although the missing data are interpolated in advance using 
conventional interpolation methods. However, the proposed 
method is very robust to incomplete RCS datasets, and the 
accuracy of the proposed method is also better than that of 
OMP, BP, and SL0.

3.2 | Measured results

To further validate the proposed method in a realistic envi-
ronment, the measured RCS data of a scaled aircraft model 
(see Figure 6B) at the POSTECH compact range facility 
(see Figure  6A) [30] were used for 2D SCE. The RCS 
data of the target were measured over a frequency band of 
8.3  GH−12.3  GHz and  ±4.8° aspect region with respect 
to the head of the target. The measurement polarization 
was vertical. The original FT-based ISAR image using the 
measured complete RCS data and nine SCs extracted using 
the proposed method (nSC = 9) under the aforementioned 
experimental conditions are depicted in Figures 6C and 6D, 
respectively. Notably, the geometry of the target, including 
the cockpit and two tails, is well indicated in the 2D image 
domain. As depicted in Figure 6D, the predicted nSC was 
automatically determined by the stopping criterion C in 
(15) (� = 0.005), and the 2D adaptive grid composed of the 
M x N coarse grid (Δx1 = ΔxFb and Δy1 = ΔyFb) and locally 
fine grids (Δx=ΔxFb∕5 and Δy=ΔyFb∕5) was used to build 
the adaptively sampled Fourier dictionary in the proposed 
method. Figure 6E depicts an incomplete RCS dataset with 
pm= 43.8% by excluding the randomly selected data from 
the measured complete RCS dataset. Upon applying the 
proposed method to the measured incomplete RCS data-
set, the extracted SCs depicted in Figure 6F (X marker in 

(18)MSE2D =
1

MN

M∑

m=1

N∑

n=1

(|I(m,n)|− |Ir(m,n)|)2,

T A B L E  1  ERamp values from the average results of 100 
independent realizations for 7 SCs when pm = 55.5%

Item OMP BP SL0
Proposed 
method

Amplitude
accuracy

0.29 0.385 0.214 0.0014

T A B L E  2  Average computation times (s) (N = 10) for each method using a PC with an Intel i7-4930K CPU and 64 GB RAM running 
MATLAB R2014a

Item
CLEAN
+LIP

RELAX
+LIP

ESPRIT
+LIP OMP BP SL0

Proposed 
method

Average
time (s)

0.557 24.27 0.031 0.087 17.06 2.55 0.908

F I G U R E  5  MSE2D vs pm when nSC = 25 (pm = 12.8% with 
M� =N� = 1, pm= 24.8% with M� =N�= 2, pm= 36% with M� =N� = 3, 
pm = 46.2% with M� =N� = 4, and pm = 55.5% with M� =N� = 5)
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F I G U R E  6  2D SCE using the 
proposed method for the measured RCS 
data. (A) POSTECH compact range [30]. 
(B) Geometry of the scaled aircraft model, 
F-117 (79 cm × 118 cm). (C) Original FT-
based ISAR image. (D) SCs extracted using 
the complete RCS data. (E) Incomplete RCS 
dataset with pm = 43.8% (M = N = 60 and 
M� =N�= 15). (F) SCs extracted using the 
incomplete RCS dataset in Figure 6E

(E)

(C)

(A)

(F)

(D)

(B)

F I G U R E  7  2D SCE using the 
proposed method for the measured RCS 
data. (A) Geometry of the scaled aircraft 
model, F-14 (146 × 131 cm). (B) Geometry 
of the scaled aircraft model, MIG-29 
(79 × 118.5 cm). (C) Original FT-based 
ISAR image and its extracted SCs with 
nSC = 25 for the target (see Figure 7A). 
(D) Original FT-based ISAR image and 
its extracted SCs with nSC = 27 for the 
target (see Figure 7B). Circle in black: SCs 
estimated using the complete dataset

(A)

(C)

(B)

(D)
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red) were obtained, showing reliable SCE accuracy per-
formance as compared with that of the results presented 
in Figure 6D.

Because the target in Figure  6B has the geometry of a 
stealth aircraft, we considered another two targets with more 
SCs to verify the capability of 2D SCE using the proposed 
method, as depicted in Figures 7A and 7B. On the basis of the 
same experimental conditions as those in Figure 6, the orig-
inal FT-based ISAR images using the measured complete 
RCS dataset are depicted in Figure  7C with the estimated 
nSC = 25 and Figure 7D with the estimated nSC = 27 (circle 
in black) using the same stopping criterion C (� = 0.005). 
In this experiment, the azimuth aspect varied from 30.2º to 
59.8º with respect to the head of the target. The measurement 
polarization was horizontal for the target in Figure 7A and 
vertical for that in Figure 7B. The same 2D adaptive grid com-
posed of the M × N coarse grid (Δx1 = ΔxFb and Δy1 = ΔyFb) 
 and locally fine grids (Δx = ΔxFb∕5 and Δy = ΔyFb∕5) was 

used to build the adaptively sampled Fourier dictionary in 
the proposed method. Because of the adaptive grid gener-
ation, the computation time of the proposed method using 
the adaptively sampled grid (Tc = 146.5 s for Figure 7A and 
Tc  =  152.4  s for Figure  7B) was considerably reduced as 
compared with the time taken upon using the fully sampled 
fine grid (Tc = 8,401.5 s for Figure 7A and Tc= 8,450.8 s for 
Figure 7B).

Upon applying the proposed method to the two mea-
sured incomplete RCS datasets with the same pm = 43.8% 
(see Figures 8A and 8B), the extracted SCs [X marker in 
red in Figures 8E and 8F] are obtained and overlapped with 
the corresponding SCs estimated using the complete RCS 

F I G U R E  8  2D SCE using the proposed method for the 
measured incomplete RCS data. (A) Incomplete RCS dataset 
with pm = 43.8% for the target (M = N = 60 and M� =N� = 15, see 
Figure 7A). (B) Incomplete RCS dataset with pm = 43.8% for the target 
(see Figure 7B). (C) ISAR image using the incomplete RCS dataset 
(see Figure 7A). (D) ISAR image using the incomplete RCS dataset 
(see Figure 7B). (E) Extracted SCs using the incomplete RCS data 
(see Figure 7A). (F) SCs extracted using the incomplete RCS data (see 
Figure 7B). Circle in black: SCs estimated using the complete dataset. 
X marker in red: estimated SCs using the incomplete dataset
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F I G U R E  9  MSE2D vs pm (Pm = 12.9% with M� =N� = 4, 
Pm = 22% with M� =N� = 7, pm = 33.3% with M� =N� = 11, pm = 43.8% 
with M� =N� = 15, and pm = 51% with M� =N� = 18). (A) Target in 
Figure 6B. (B) Target in Figure 7A. (C) Target in Figure 7B
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data [circle in black in Figures 8E and 8F). Consequently, 
the extracted SCs for the three targets (see Figure 6F and 
X marker in Figures  8E and 8F) are consistent with the 
originally estimated SCs (see Figure  6D and circle in 
Figures 8E and 8F, respectively), although the incomplete 
datasets that produce distorted ISAR images, such as those 
in Figures 8C and 8D, are used for 2D SCE in the proposed 
method.

To evaluate the performance of the proposed method for 
the measured data, we first constructed different incomplete 
RCS datasets ranging from 12.9% to 51%. Subsequently, we 
calculated the MSE2D values from the average result of 100 
independent realizations for each pm value (see Figure 9). 
In this experiment, we did not consider conventional DSE 
methods to obtain the comparative result because the con-
ventional DSE methods are generally expected to fail in ex-
tracting SCs with incomplete RCS datasets (see Figures 4 
and 5). Regarding the nSCs, note that OMP, SL0 with the 
fine-estimation procedure, and the proposed method de-
picted in Figure 9 use the same stopping criterion presented 
in (15) (� = 0.005) at every realization per pm, as there is 
no prior knowledge of the true nSC of the target in real 
situations. Consequently, as depicted in Figure 9, the pro-
posed method exhibits good performance in terms of SCE 
accuracy over the measured incomplete RCS dataset of a 
realistic target.

4 |  Conclusion

A robust 2D SCE method based on the CS theory was pro-
posed for incomplete RCS datasets. The proposed method 
comprised three parts: 1) generation of the adaptively 
sampled grid with a combination of coarse sampling and 
partially fine sampling in the 2D image domain; 2) coarse 
estimation of SCs using the lp-norm optimization technique 
(IRLS) coupled with PFA from the 2D adaptive grid; and 
3) fine estimation of SCs with the help of the OMP algo-
rithm using the adaptively sampled Fourier dictionary. 
Because of the adaptive grid generation, the computational 
complexity of the proposed method was significantly re-
duced as compared with that using the fully sampled fine 
grid. Furthermore, because of the fine-estimation proce-
dure, using the proposed method, we could achieve a more 
accurate estimate of SCs as compared with that achieved 
via the SCE method using only PFA. Another advantage is 
that the proposed method can automatically estimate nSC 
by implementing the stopping criterion using the relative 
change. To quantitatively validate the 2D SCE capability 
of the proposed method, we adopted ERSCE and MSE2D as 
the performance measures and compared the accuracy of 
the proposed method with those of the existing 2D SCE 
methods. The results showed that the proposed method 

generally achieves high SCE accuracy for incomplete RCS 
datasets with missing data, as compared with those of the 
other methods considered in this study.

Finally, the proposed method for 2D SCE adopted the 
simplified GTD model without frequency-dependence 
and angle-dependence terms. Notably, the original GTD 
model is a more accurate model to express the backscat-
tered field of a target, although the proposed method 
using the simplified model showed reasonable results for 
2D SCE. However, the above-mentioned two dependence 
terms make it challenging to directly apply the CS theory 
to 2D SCE, in general, in terms of reliable sparse recov-
ery and efficient computational complexity. In the future, 
we will consider the extension to 2D SCE using the GTD 
model to combine it with the proposed CS-theory based 
method.
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