• Title/Summary/Keyword: spectral model

Search Result 1,304, Processing Time 0.032 seconds

A Study of Sub-Pixel Detection for Hyperspectral Image Using Linear Spectral Unmixing Algorithm (Linear Spectral Unmixing 기법을 이용한 하이퍼스펙트럴 영상의 Sub-Pixel Detection에 관한 연구)

  • 김대성;조영욱;한동엽;김용일
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.161-166
    • /
    • 2003
  • Hyperspectral imagery have high spectral resolution and provide the potential for more accurate and detailed information extraction than any other type of remotely sensed data. In this paper, the "Linear Spectral Unmixing" model which is one solution to overcome the limit of spatial resolution for remote sensing data was introduced and we applied the algorithm to hyperspectral image. The result was not good because of some problems such as image calibration and used endmembers. Therefore, we analyzed the cause and had a search for a solution.

  • PDF

Quantization of LPC Coefficients Using a Multi-frame AR-model (Multi-frame AR model을 이용한 LPC 계수 양자화)

  • Jung, Won-Jin;Kim, Moo-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.93-99
    • /
    • 2012
  • For speech coding, a vocal tract is modeled using Linear Predictive Coding (LPC) coefficients. The LPC coefficients are typically transformed to Line Spectral Frequency (LSF) parameters which are advantageous for linear interpolation and quantization. If multidimensional LSF data are quantized directly using Vector-Quantization (VQ), high rate-distortion performance can be obtained by fully utilizing intra-frame correlation. In practice, since this direct VQ system cannot be used due to high computational complexity and memory requirement, Split VQ (SVQ) is used where a multidimensional vector is split into multilple sub-vectors for quantization. The LSF parameters also have high inter-frame correlation, and thus Predictive SVQ (PSVQ) is utilized. PSVQ provides better rate-distortion performance than SVQ. In this paper, to implement the optimal predictors in PSVQ for voice storage devices, we propose Multi-Frame AR-model based SVQ (MF-AR-SVQ) that considers the inter-frame correlations with multiple previous frames. Compared with conventional PSVQ, the proposed MF-AR-SVQ provides 1 bit gain in terms of spectral distortion without significant increase in complexity and memory requirement.

Hybrid-Domain High-Frequency Attention Network for Arbitrary Magnification Super-Resolution (임의배율 초해상도를 위한 하이브리드 도메인 고주파 집중 네트워크)

  • Yun, Jun-Seok;Lee, Sung-Jin;Yoo, Seok Bong;Han, Seunghwoi
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1477-1485
    • /
    • 2021
  • Recently, super-resolution has been intensively studied only on upscaling models with integer magnification. However, the need to expand arbitrary magnification is emerging in representative application fields of actual super-resolution, such as object recognition and display image quality improvement. In this paper, we propose a model that can support arbitrary magnification by using the weights of the existing integer magnification model. This model converts super-resolution results into the DCT spectral domain to expand the space for arbitrary magnification. To reduce the loss of high-frequency information in the image caused by the expansion by the DCT spectral domain, we propose a high-frequency attention network for arbitrary magnification so that this model can properly restore high-frequency spectral information. To recover high-frequency information properly, the proposed network utilizes channel attention layers. This layer can learn correlations between RGB channels, and it can deepen the model through residual structures.

Dynamic Modeling and Analysis of the Composite Beams with a PZT Layer (PZT층을 갖는 복합재 보의 동역학 모델링 및 해석)

  • Kim, Dae-Hwan;Lee, U-Sik
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.314-316
    • /
    • 2011
  • This paper develops a spectral element model for the composite beams with a surface-bonded piezoelectric layer from the governing equations of motion. The governing equations of motion are derived from Hamilton's principle by applying the Bernoulli-Euler beam theory for the bending vibration and the elementary rod theory for the longitudinal vibration of the composite beams. For the PZT layer, the Bernoulli-Euler beam theory and linear piezoelectricity theory are applied. The high accuracy of the present spectral element model is evaluated through the numerical examples by comparing with the finite element analysis results.

  • PDF

A new AR power spectral estimation technique using the Karhunen-Loeve Transform (KLT를 이용한 AR 스펙트럼 추정기법에 관한 연구)

  • 공성곤;양흥석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.134-136
    • /
    • 1986
  • In this paper, a new power spectral estimation technique is presented. At first, by transforming the original data with the Karhunen-Loeve Transform(KLT), we can reduce the amount of the redundant information. Next, by modeling the transformed data by means of the autoregressive(AR) model and then applying the least-squares parameter estimation algorithm to this model, even more accurate spectrum estimates can be obtained. The KLT is the optimum transform for signal representation with respect to the mean-square error criterion. And the least-squares method is used to overcome the inherent shortcomings of popular burg algorithm.

  • PDF

An analysis method of reflectance spectra of strongly correlated electron systems

  • Hwang, Jungseek
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.1
    • /
    • pp.14-18
    • /
    • 2013
  • We introduce a generic method to analyze optical 17reflectance spectra of strongly correlated electron systems including high-temperature superconductors by using an extended Drude model and Allen's approach. We explain the process step by step from reflectance through the optical conductivity and the scattering rate to the bosonic spectral function. Through the process we are able to get important information on the interactions between charge carriers from measured optical conductivity of the strongly correlated electron systems including copper oxide and iron pnitide high temperature superconductors.

Spectral Element Modeling of an Extended Timoshenko Beam: Variational Approach (변분법을 이용한 확장된 티모센코 보에 대한 스펙트럴 요소 모델링)

  • Lee, Chang-Ho;Lee, U-Sik
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1403-1406
    • /
    • 2008
  • Periodic lattice structures such as the large space lattice structures and carbon nanotubes may take the extension-transverse shear-bending coupled vibrations, which can be well represented by the extended Timoshenko beam theory. In this paper, the spectrally formulated finite element model (simply, spectral element model) has been developed for extended Timoshenko beams and applied to some typical periodic lattice structures such as the armchair carbon nanotube, the periodic plane truss, and the periodic space lattice beam.

  • PDF

Direct Determination of Spectral Phonon-Surface Scattering Rate from Experimental Data on Spectral Phonon Mean Free Path Distribution (실험적 포논 평균자유행로 스펙트럼 분포를 이용한 포논 스펙트럼 포논-표면 산란율 모델)

  • Jin, Jae Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.9
    • /
    • pp.621-627
    • /
    • 2016
  • In this study, we present a model that can be used to calculate the phonon-surface scattering rate directly from the experimental data on phonon mean free path (MFP) spectra of nanostructures. Using this model and the recently reported length-dependent thermal conductivity measurements on $Si_{0.9}Ge_{0.1}$ nanowires (NWs), we investigate the spectral reduced MFP distribution and the spectral phonon-surface scattering rate in the $Si_{0.9}Ge_{0.1}$ NWs. From the results, it is found that the phonon transport properties with the material and the phonon frequency dependency of the spectral phonon-surface scattering rate per unit length of the NW. The model presented in this study can be used for developing heat transfer analysis models of nanomaterials, and for determining the optimum design for tailoring the heat transfer characteristics of nanomaterials for future applications of phonon nanoengineering.

Solution of randomly excited stochastic differential equations with stochastic operator using spectral stochastic finite element method (SSFEM)

  • Hussein, A.;El-Tawil, M.;El-Tahan, W.;Mahmoud, A.A.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.2
    • /
    • pp.129-152
    • /
    • 2008
  • This paper considers the solution of the stochastic differential equations (SDEs) with random operator and/or random excitation using the spectral SFEM. The random system parameters (involved in the operator) and the random excitations are modeled as second order stochastic processes defined only by their means and covariance functions. All random fields dealt with in this paper are continuous and do not have known explicit forms dependent on the spatial dimension. This fact makes the usage of the finite element (FE) analysis be difficult. Relying on the spectral properties of the covariance function, the Karhunen-Loeve expansion is used to represent these processes to overcome this difficulty. Then, a spectral approximation for the stochastic response (solution) of the SDE is obtained based on the implementation of the concept of generalized inverse defined by the Neumann expansion. This leads to an explicit expression for the solution process as a multivariate polynomial functional of a set of uncorrelated random variables that enables us to compute the statistical moments of the solution vector. To check the validity of this method, two applications are introduced which are, randomly loaded simply supported reinforced concrete beam and reinforced concrete cantilever beam with random bending rigidity. Finally, a more general application, randomly loaded simply supported reinforced concrete beam with random bending rigidity, is presented to illustrate the method.

Regularization Parameter Selection for Total Variation Model Based on Local Spectral Response

  • Zheng, Yuhui;Ma, Kai;Yu, Qiqiong;Zhang, Jianwei;Wang, Jin
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1168-1182
    • /
    • 2017
  • In the past decades, various image regularization methods have been introduced. Among them, total variation model has drawn much attention for the reason of its low computational complexity and well-understood mathematical behavior. However, regularization parameter estimation of total variation model is still an open problem. To deal with this problem, a novel adaptive regularization parameter selection scheme is proposed in this paper, by means of using the local spectral response, which has the capability of locally selecting the regularization parameters in a content-aware way and therefore adaptively adjusting the weights between the two terms of the total variation model. Experiment results on simulated and real noisy image show the good performance of our proposed method, in visual improvement and peak signal to noise ratio value.