Browse > Article
http://dx.doi.org/10.3795/KSME-B.2016.40.9.621

Direct Determination of Spectral Phonon-Surface Scattering Rate from Experimental Data on Spectral Phonon Mean Free Path Distribution  

Jin, Jae Sik (Dept. of Mechanical Design, Chosun College of Science & Technology)
Publication Information
Transactions of the Korean Society of Mechanical Engineers B / v.40, no.9, 2016 , pp. 621-627 More about this Journal
Abstract
In this study, we present a model that can be used to calculate the phonon-surface scattering rate directly from the experimental data on phonon mean free path (MFP) spectra of nanostructures. Using this model and the recently reported length-dependent thermal conductivity measurements on $Si_{0.9}Ge_{0.1}$ nanowires (NWs), we investigate the spectral reduced MFP distribution and the spectral phonon-surface scattering rate in the $Si_{0.9}Ge_{0.1}$ NWs. From the results, it is found that the phonon transport properties with the material and the phonon frequency dependency of the spectral phonon-surface scattering rate per unit length of the NW. The model presented in this study can be used for developing heat transfer analysis models of nanomaterials, and for determining the optimum design for tailoring the heat transfer characteristics of nanomaterials for future applications of phonon nanoengineering.
Keywords
Phonon-Surface Scattering; Phonon Mean Free Path; Thermal Conductivity; Si-Ge Nanowire;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Tien, C. L., Majumdar, A. and Gerner, F. M., 1998, MICROSCALE ENERGY TRANSPORT, Taylor & Francis, Washington D. C., pp. 3-94.
2 Zhang, Z. M., 2007, Nano/Microscale Heat Transfer, Mc Graw Hill, New York, pp. 162-182.
3 Kim, W., Zide, J., Gossard, A., Klenov, D., Stemmer, S., Shakouri, A. and Majumdar, A, 2006, "Thermal Conductivity Reduction and Thermoelectric Figure of Merit Increase by Embedding Nanoparticles in Crystalline Semiconductors," Physical Review Letters, Vol. 96, No. 4, Paper Number 045901.
4 Kim, W., 2015, "Strategies for Engineering Phonon Transport in Thermoelectrics," Journal of Materials Chemistry C, Vol. 3, No. 10, pp. 10336-10348.
5 Park, H. J., Nah, J. H., Tutuc, E. and Seol, J. H., 2015, "Thermal Conductivity Measurement of Ge-SixGe1-x Core-Shell Nanowires Using Suspended Microdevices," Trans. Korean Soc. Mech. Eng. B, Vol. 39, No. 10, pp. 825-829.   DOI
6 Li, D., Wu, Y., Kim, P., Shi, L., Yang, P. and Majumdar, A., 2003, "Thermal Conductivity of Individual Silicon Nanowires," Applied Physics Letters, Vol. 83, No. 14, pp. 2934-2936.   DOI
7 Hochbaum, A. I., Chen, R., Delgado, R. D., Liang, W., Garnett, E. C., Najarian, M., Majumdar, A. and Yang, P., 2008, "Enhanced Thermoelectric Performance of Rough Silicon Nanowires," Nature, Vol. 451, No. 7175, pp. 163-167.   DOI
8 Zou, J. and Balandin, A., 2001, "Phonon Heat Conduction in a Semiconductor Nanowire," Journal of Applied Physics, Vol. 89, No. 5, pp. 2932-2938.   DOI
9 Lim, J., Hippalgaonkar, K., Andrews, S. C., Majumdar, A. and Yang, P., 2012, "Quantifying Surface Roughness Effects on Phonon Transport in Silicon Nanowires," Nano Letters, Vol. 12, No. 5, pp. 2475-2482.   DOI
10 Chen, R., Hochbaum, A. I., Murphy, P., Moore, J., Yang, P. and Majumdar, A, 2008, "Thermal Conductance of Thin Silicon Nanowires," Physical Review Letters, Vol. 101, No. 10, Paper Number 105501.
11 Ghossoub, M. G., Valavala, K. V., Seong, M., Azeredo, B., Hsu, K., Sadhu, J. S., Singh, P. K. and Sinha, S., 2013, "Spectral Phonon Scattering from Sub-10 nm Surface Roughness Wavelengths in Metal-Assisted Chemically Etched Si Nanowires," Nano Letters, Vol. 13, No. 4, pp. 1564-1571.   DOI
12 Hertzberg, J. B., Aksit, M., Otelaja, O. O., Stewart, D. A. and Robinson, R. D., 2014, "Direct Measurements of Surface Scattering in Si Nanosheets Using a Microscale Phonon Spectrometer: Implications for Casimir-Limit Predicted by Ziman Theory," Nano Letters, Vol. 14, No. 2, pp. 409-415.
13 Marchbanks, C. and Wu, Z., 2015, "Reduction of Heat Capacity and Phonon Group Velocity in Silicon Nanowires," Journal of Applied Physics, Vol. 117, No. 8, Paper Number 084305.
14 Zhou, Y., Chen, Y. and Hu, M., 2016, "Strong Surface Orientation Dependent Thermal Transport in Si Nanowires," Scientific Report, Vol. 6, Paper Number 24903.
15 Zianni, X. and Chantrenne, P., 2013, "Thermal Conductivity of Diameter-Modulated Silicon Nanowires Within a Frequency-Dependent Model for Phonon Boundary Scattering," Journal of Electronic Materials, Vol. 42, No. 7, pp. 1509-1513.   DOI
16 Xie, G., Guo, Y., Li, B., Yang, L., Zhang, K., Tang, M. and Zhang, G., 2013, "Phonon Surface Scattering Controlled Length Dependence of Thermal Conductivity of Silicon Nanowires," Physical Chemistry Chemical Physics, Vol. 15, No. 35, pp. 14647-14652.   DOI
17 Sadhu, J. and Sinha, S., 2011, "Room-temperature Phonon Boundary Scattering Below the Casimir Limit," Physical Review B, Vol. 84, No. 11, Paper Number 115450.
18 Feser, J. P., Sadhu, J. S., Azeredo, B. P., Hsu, K. H., Ma, J., Kim, J., Seong, M., Fang, N. X., Li, X., Ferreira, P. M., Sinha, S. and Cahill, D. G., 2012, "Thermal Conductivity of Silicon Nanowire Arrays with Controlled Roughness," Journal of Applied Physics, Vol. 112, No. 11, Paper Number 114306.
19 Hsiao, T.-K., Chang, H.-K., Liou, S.-C., Chu, M.-W., Lee, S.-C. and Chang, C.-W., 2013, "Observation of Room Temperature Ballistic Thermal Conduction Persisting over 8.3 ${\mu}m$ in SiGe Nanowires," Nature Nanotechnology, Vol. 8, No. 7, pp. 534-538.   DOI
20 Malhotra, A. and Maldovan, M., 2016, "Impact of Phonon Surface Scattering on Thermal Energy Distribution of Si and SiGe Nanowires," Scientific Report, Vol. 6, Paper Number 25818.
21 Narumanchi, S. V. J., Murthy, J. Y. and Amon, C. H., 2004, "Submicron Heat Transfer Model in Silicon Accounting for Phonon Dispersion and Polarization," ASME Journal of Heat Transfer, Vol. 126, No. 6, pp. 946-955.   DOI
22 Xie, G., Guo, Y., Wei, X., Zhang, K., Sun, L., Zhong, J., Zhang, G. and Zhang, Y.-W., 2014, "Phonon Mean Free Path Spectrum and Thermal Conductivity for $Si_{1-x}Ge_x$ Nanowires," Applied Physics Letters, Vol. 104, No. 23, Paper Number 233901.
23 Yin, L., Lee, E. K., Lee, J. W., Whang, D., Choi, B. L. and Yu, C., 2012, "The Influence of Phonon Scatterings on the Thermal Conductivity of SiGe Nanowires," Applied Physics Letters, Vol. 101, No. 4, Paper Number 043114.
24 Zhang, H., Hua, C., Ding D. and Minnich, A. J., 2015, "Length Dependent Thermal Conductivity Measurements Yield Phonon Mean Free Path Spectra in Nanostructures," Scientific Report, Vol. 5, Paper Number 9121.
25 Narumanchi, S. V. J., Murthy, J. Y. and Amon, C. H., 2005, "Comparison of Different Phonon Transport Models for Predicting Heat Conduction in Silicon-oninsulator Transistors," ASME Journal of Heat Transfer, Vol. 127, No. 7, pp. 713-723.   DOI
26 Kang, H.-S., Koh, Y. H. and Jin, J. S., 2016, "A Numerical Study on the Anisotropic Thermal Conduction by Phonon Mean Free Path Spectrum of Silicon in Silicon-on-Insulator Transistor," Trans. Korean Soc. Mech. Eng. B, Vol. 40, No. 2, pp. 111-117.   DOI
27 Lee, J., Lim, J. and Yang, P., 2015, "Ballistic Phonon Transport in Holey Silicon," Nano Letters, Vol. 5, No. 5, pp. 3273-3279.
28 Minnich, A. J., 2015, "Thermal Phonon Boundary Scattering in Anisotropic Thin Films," Applied Physics Letters, Vol. 107, No. 18, Paper Number 183106.
29 Sellan, D. P., Turney, J. E., McGaughey, A. J. H. and Amon, C. H., 2010, "Cross-plane Phonon Transport in Thin Films," Journal of Applied Physics, Vol. 108, No. 11, Paper Number 113524.
30 Brockhouse, B. N., 1959, "Lattice Vibrations in Silicon and Germanium," Physical Review Letters, Vol. 2, No. 6, pp. 256-258.   DOI
31 Majumdar, A., 1993, ''Microscale Heat Conduction in Dielectric Thin Films,'' ASME Journal of Heat Transfer, Vol. 115, No. 7, pp. 7-16.   DOI
32 Jain, A., Yu, Y.-J. and McGaughey, A. J. H., 2013, "Phonon Transport in Periodic Silicon Nanoporous Films with Feature Sizes Greater Than 100 nm," Physical Review B, Vol. 87, No. 19, Paper Number 195301.
33 Minnich, A. J., Johnson, J. A., Schmidt, A. J., Esfarjani, K., Dresselhaus, M. S., Nelson, K. A. and Chen, G., 2011, "Thermal Conductivity Spectroscopy Technique to Measure Phonon Mean Free Paths," Physical Review Letters, Vol. 107, No. 9, Paper Number 095901.
34 Minnich, A. J., 2012, "Determining Phonon Mean Free Paths from Observations of Quasiballistic Thermal Transport," Physical Review Letters, Vol. 109, No. 20, Paper Number 205901.
35 Jin, J. S., 2014, "Prediction of Phonon and Electron Contributions to Thermal Conduction in Doped Silicon Films," Journal of Mechanical Science and Technology, Vol. 28, No. 6, pp. 2287-2292.   DOI
36 Esfarjani, K. and Chen, G., 2011, "Heat Transport in Silicon from First-principles Calculations," Physical Review B, Vol. 84, No. 8, Paper Number 085204.