• Title/Summary/Keyword: spectral image

Search Result 855, Processing Time 0.031 seconds

Evaluation of Quality Improvement Achieved by Deterministic Image Restoration methods on the Pan-Sharpening of High Resolution Satellite Image (결정론적 영상복원과정을 이용한 고해상도 위성영상 융합 품질 개선정도 평가)

  • Byun, Young-Gi;Chae, Tae-Byeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.5
    • /
    • pp.471-478
    • /
    • 2011
  • High resolution Pan-sharpening technique is becoming increasingly important in the field of remote sensing image analysis as an essential image processing to improve the spatial resolution of original multispectral image. The general scheme of pan-sharpening technique consists of upsampling process of multispectral image and high-pass detail injection process using the panchromatic image. The upsampling process, however, brings about image blurring, and this lead to spectral distortion in the pan-sharpening process. In order to solve this problem, this paper presents a new method that adopts image restoration techniques based on optimization theory in the pan-sharpening process, and evaluates its efficiency and application possibility. In order to evaluate the effect of image restoration techniques on the pansharpening process, the result obtained using the existing method that used bicubic interpolation were compared visually and quantitatively with the results obtained using image restoration techniques. The quantitative comparison was done using some spectral distortion measures for use to evaluate the quality of pan-sharpened image.

Differentiation of Beef and Fish Meals in Animal Feeds Using Chemometric Analytic Models

  • Yang, Chun-Chieh;Garrido-Novell, Cristobal;Perez-Marin, Dolores;Guerrero-Ginel, Jose E.;Garrido-Varo, Ana;Cho, Hyunjeong;Kim, Moon S.
    • Journal of Biosystems Engineering
    • /
    • v.40 no.2
    • /
    • pp.153-158
    • /
    • 2015
  • Purpose: The research presented in this paper applied the chemometric analysis to the near-infrared spectral data from line-scanned hyperspectral images of beef and fish meals in animal feeds. The chemometric statistical models were developed to distinguish beef meals from fish ones. Methods: The meal samples of 40 fish meals and 15 beef meals were line-scanned to obtain hyperspectral images. The spectral data were retrieved from each of 3600 pixels in the Region of Interest (ROI) of every sample image. The wavebands spanning 969 nm to 1551 nm (across 176 spectral bands) were selected for chemometric analysis. The partial least squares regression (PLSR) and the principal component analysis (PCA) methods of the chemometric analysis were applied to the model development. The purpose of the models was to correctly classify as many beef pixels as possible while misclassified fish pixels in an acceptable amount. Results: The results showed that the success classification rates were 97.9% for beef samples and 99.4% for fish samples by the PLSR model, and 85.1% for beef samples and 88.2% for fish samples by the PCA model. Conclusion: The chemometric analysis-based PLSR and PCA models for the hyperspectral image analysis could differentiate beef meals from fish ones in animal feeds.

An Optimal Combination of Illumination Intensity and Lens Aperture for Color Image Analysis

  • Chang, Y. C.
    • Agricultural and Biosystems Engineering
    • /
    • v.3 no.1
    • /
    • pp.35-43
    • /
    • 2002
  • The spectral color resolution of an image is very important in color image analysis. Two factors influencing the spectral color resolution of an image are illumination intensity and lens aperture for a selected vision system. An optimal combination of illumination intensity and lens aperture for color image analysis was determined in the study. The method was based on a model of dynamic range defined as the absolute difference between digital values of selected foreground and background color in the image. The role of illumination intensity in machine vision was also described and a computer program for simulating the optimal combination of two factors was implemented for verifying the related algorithm. It was possible to estimate the non-saturating range of the illumination intensity (input voltage in the study) and the lens aperture by using a model of dynamic range. The method provided an optimal combination of the illumination intensity and the lens aperture, maximizing the color resolution between colors of interest in color analysis, and the estimated color resolution at the combination for a given vision system configuration.

  • PDF

Reducing Spectral Signature Confusion of Optical Sensor-based Land Cover Using SAR-Optical Image Fusion Techniques

  • ;Tateishi, Ryutaro;Wikantika, Ketut;M.A., Mohammed Aslam
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.107-109
    • /
    • 2003
  • Optical sensor-based land cover categories produce spectral signature confusion along with degraded classification accuracy. In the classification tasks, the goal of fusing data from different sensors is to reduce the classification error rate obtained by single source classification. This paper describes the result of land cover/land use classification derived from solely of Landsat TM (TM) and multisensor image fusion between JERS 1 SAR (JERS) and TM data. The best radar data manipulation is fused with TM through various techniques. Classification results are relatively good. The highest Kappa Coefficient is derived from classification using principal component analysis-high pass filtering (PCA+HPF) technique with the Overall Accuracy significantly high.

  • PDF

Generating of the same hue population using hue angle and chroma vector (색상각와 채도벡터를 이용한 동일색상의 분광반사 모집단 생성)

  • 유미옥;서봉우;안석출
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.18 no.2
    • /
    • pp.1-12
    • /
    • 2000
  • This paper proposes a new algorithm classifing same hues in order toe estimate the spectral reflectance of object from 3 band color image information. To estimate the spectral reflectance of object, the conventional estimation methods are required of 5 or 9 band digital color values. The 5 or 9 band image acquisition systems are required of 5 or 3 times same work for color image acquisition process. To solve the above problems, we propose a new method that can be estimated spectra reflectance estimation of object. The proposed method is to classify same hues corresponding a color stimulus, by using hue angle and chroma vector of a color stimulus. The classified same hues are used as the population corresponding a color stimulus. The range of same hue is estimated by the cumulative proportional ration according to the number of basis function.

  • PDF

A New Microwave Imaging Technique Using a Coherent Tomographic Scheme in Space Domain (공간영역에서 코히어런트 단층촬영 기법을 이용한 새로운 초고주파 영상방법)

  • Seo, Kyoung-Whoan;Kim, Se-Yun;Ra, Jung-Woong
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.2
    • /
    • pp.16-30
    • /
    • 1990
  • The microwave imaging technique which is mostly analyzed in the spectral domain has been exploited the image reconstruction of object using the 2-dimensional inverse Fourier transform so far. In this paper, a new method of microwave imaging corresponding to a coherent tomographic scheme in the space domain is presented for the conducting objects. Also, it is shown that image reconstruction for lines targets and conducting circular cylinder is per-formed by computer simulation using the filtered-backprojection which is the reconstruction algorithm widely used in X-ray CT. The proposed method analyzed in the space domain can reconstruct the image without any problems such as interpolation and image artifact which results from the reconstruction in the spectral domain for the symmetric conducting objects located in the origin. The image reconstructed by the filtered-backprojection in the space domain has given the superior quality compared with that produced by 2-dimensional IFFT using the interpolation scheme in the spectral domain. Finally, the image of line targets using the moment-method in the space domain which does not require the wide-band signal as the spectral domain has shown a possibility of super-resolution in the microwave imaging.

  • PDF

High Resolution Reconstruction of Multispectral Imagery with Low Resolution (저해상도 Multispectral 영상의 고해상도 재구축)

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.6
    • /
    • pp.547-552
    • /
    • 2007
  • This study presents an approach to reconstruct high-resolution imagery for multispectral imagery of low-resolution using panchromatic imagery of high-resolution. The proposed scheme reconstructs a high-resolution image which agrees with original spectral values. It uses a linear model of high-and low- resolution images and consists of two stages. The first one is to perform a global estimation of the least square error on the basis of a linear model of low-resolution image associated with high-resolution feature, and next local correction then makes the reconstructed image locally fit to the original spectral values. In this study, the new method was applied to KOMPSAT-1 EOC image of 6m and LANDSAT ETM+ of 30m, and an 1m RGB image was also generated from 4m IKONOS multispectral data. The results show its capability to reconstruct high-resolution imagery from multispectral data of low-resolution.

A HIERARCHICAL APPROACH TO HIGH-RESOLUTION HYPERSPECTRAL IMAGE CLASSIFICATION OF LITTLE MIAMI RIVER WATERSHED FOR ENVIRONMENTAL MODELING

  • Heo, Joon;Troyer, Michael;Lee, Jung-Bin;Kim, Woo-Sun
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.647-650
    • /
    • 2006
  • Compact Airborne Spectrographic Imager (CASI) hyperspectral imagery was acquired over the Little Miami River Watershed (1756 square miles) in Ohio, U.S.A., which is one of the largest hyperspectral image acquisition. For the development of a 4m-resolution land cover dataset, a hierarchical approach was employed using two different classification algorithms: 'Image Object Segmentation' for level-1 and 'Spectral Angle Mapper' for level-2. This classification scheme was developed to overcome the spectral inseparability of urban and rural features and to deal with radiometric distortions due to cross-track illumination. The land cover class members were lentic, lotic, forest, corn, soybean, wheat, dry herbaceous, grass, urban barren, rural barren, urban/built, and unclassified. The final phase of processing was completed after an extensive Quality Assurance and Quality Control (QA/QC) phase. With respect to the eleven land cover class members, the overall accuracy with a total of 902 reference points was 83.9% at 4m resolution. The dataset is available for public research, and applications of this product will represent an improvement over more commonly utilized data of coarser spatial resolution such as National Land Cover Data (NLCD).

  • PDF

Merging of KOMPSAT-1 EOC Image and MODIS Images to Survey Reclaimed Land (간척지 조사를 위한 KOMPSAT-1 EOC 영상과 MODIS 영상의 중합)

  • 신석효;김상철;안기원;임효숙;서두천
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.171-180
    • /
    • 2003
  • The merging of different scales or multi-sensor image data is becoming a widely used procedure of the complementary nature of various data sets. Ideally, the merging method should not distort the characteristics of the high-spatial and high-spectral resolution data used. To present an effective merging method for survey of reclaimed land, this paper compares the results of Intensity Hue Saturation (IHS), Principal Component Analysis (PCA), Color Normalized(CN) and High Pass Filter(HPF) methods used to merge the information contents of the high-resolution (6.6 m) Electro-Optical Camera (EOC) panchromatic image of the first Korea Multi-Purpose Satellite 1 (KOMPSAT-1) and the multi-spectral Moderate Resolution Imaging Spectroradiometer (MODIS) image data. The comparison is made by visual evaluation of three-color combination images of IHS, PCA, CN and HPF results based on spatial and spectral characteristics. The use of a contrasted EOC panchromatic image as a substitute for intensity in merged images with MODIS bands 1, 2 and 3 was found to be particularly effective in this study.

  • PDF

Accuracy of Image Transformation Methods and Supervised Classifications on Multi-Spectral TM: A Comparative Study on Lower Tumen River Area (다분광 TM 영상 변환기법과 감독분류 정확도 비교연구 -두만강 하류 지역을 중심으로-)

  • Lee, Ki-Suk;Nan, Ying
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.3
    • /
    • pp.311-320
    • /
    • 1999
  • This study conducts to analyze comparative accuracy when both Image Transformation Methods and Supervised Classifications on multi-spectral TM using a case of Lower Tumen River Area. In terms of overall classification accuracy, maximum likelihood method turns out higher than other one, but in a case of vegetation only, MNF and TC image transformation methods produce a better quality of the result. Especially, seven dimensional images including MNF, TC, and NDVI create better image than three dimensional one. Among these transformation methods, maximum likelihood method results out the best one. Multi-spectral image could be useful as an important basic material for site selection of industrial allocation as well as Tumen River Area Economic Development Plan.

  • PDF