DOI QR코드

DOI QR Code

Evaluation of Quality Improvement Achieved by Deterministic Image Restoration methods on the Pan-Sharpening of High Resolution Satellite Image

결정론적 영상복원과정을 이용한 고해상도 위성영상 융합 품질 개선정도 평가

  • 변영기 (한국항공우주연구원 위성정보연구센터) ;
  • 채태병 (한국항공우주연구원 위성정보연구센터 영상운영지원팀)
  • Received : 2011.08.09
  • Accepted : 2011.10.07
  • Published : 2011.10.31

Abstract

High resolution Pan-sharpening technique is becoming increasingly important in the field of remote sensing image analysis as an essential image processing to improve the spatial resolution of original multispectral image. The general scheme of pan-sharpening technique consists of upsampling process of multispectral image and high-pass detail injection process using the panchromatic image. The upsampling process, however, brings about image blurring, and this lead to spectral distortion in the pan-sharpening process. In order to solve this problem, this paper presents a new method that adopts image restoration techniques based on optimization theory in the pan-sharpening process, and evaluates its efficiency and application possibility. In order to evaluate the effect of image restoration techniques on the pansharpening process, the result obtained using the existing method that used bicubic interpolation were compared visually and quantitatively with the results obtained using image restoration techniques. The quantitative comparison was done using some spectral distortion measures for use to evaluate the quality of pan-sharpened image.

고해상도 위성영상융합은 다중분광영상의 공간해상도를 향상시키기 위한 영상처리과정으로서 원격탐사 영상분석에서 그 중요성이 날로 커지고 있다. 고해상도 위성영상의 융합과정은 크게 다중분광영상의 크기 조절을 위한 업샘플링 과정과 흑백영상을 이용한 고주파 정보 주입과정으로 나눌 수 있다. 하지만 다중분광영상의 공간해상도를 강제적으로 키우는 업샘플링 과정에서 영상열화 현상이 수반되고 이는 이후 융합과정에서 분광정보를 왜곡시키는 하나의 원인이 된다. 이러한 문제를 해결하기 위해 본 연구에서는 최적화 기법에 근간을 둔 영상복원기법들을 위성영상 융합과정에 도입하여 이들의 효용성과 활용가능성을 평가하고자 하였다. 영상복원 기법들이 미치는 영향을 평가하기 위해 기존에 위성영상융합에 많이 사용된 공삼차 보간법을 이용한 방법과의 시각적/정량적 비교평가를 수행하였다. 정량적 비교평가 방법으로는 동일한 조건하에서 생성된 융합영상에 대한 분광왜곡 측정치를 이용하였다.

Keywords

References

  1. 최재완, 김용일 (2010), 영상의 분광 및 공간 특성을이용한 고해상도 위성영상 융합 알고리즘, 한국지형공간정보학회지, 한국지형공간정보학회, 제 18권,제 2호, pp. 79-86.
  2. Aiazzi, B., Baronti, S., and Selva, M. (2007), Improving component substitution pansharpening through multivariate regression of MS+Pan data, IEEE Transactions on Geoscience and Reomote Sensing, Vol. 45, No. 10, pp. 3230-3239. https://doi.org/10.1109/TGRS.2007.901007
  3. Alparone, L., Baronti, S., Garzelli, A., and Nencini, F. (2004), A Global Quality Measurement of Pan-Sharpened Multispcectral Imagery, IEEE Goscience and Remote Sensing Letters, Vol. 1, No. 4, pp. 313-317. https://doi.org/10.1109/LGRS.2004.836784
  4. Andrew, H.C. and Hunt, B.R. (1977), Digital image restoration, Prientice-Hall, New Jersey.
  5. Chan, T.F., and Wong, C.K. (1998), Total variation blind deconvolution, IEEE Transactions on Image Processing, Vol. 7, No. 3, pp. 370-375. https://doi.org/10.1109/83.661187
  6. Dou, W., Chen, Y., Li, X., and Sui, D. Z. (2007), A general framework for component substitution image fusion; An implementation using the fast fusion method, Computers and Geosciences, Vol. 33, pp. 219-228. https://doi.org/10.1016/j.cageo.2006.06.008
  7. Garzelli, A., and Nencini, F. (2006), PAN-sharpening of very high resolution multispectral images using genetic algorithms, Interantional Journal of Remote Sensing, Vol. 27, No. 13, pp. 3273-3292. https://doi.org/10.1080/01431160600554991
  8. Khan, M., Alparone, L., and Chanussot, J. (2009), Pansharpening Quality Assessment Using the Modulation Transfer Functions of Instruments, IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 11, pp. 3880-3891. https://doi.org/10.1109/TGRS.2009.2029094
  9. Levin, A., Fergus, R., Durand, F., and Freeman, W.T. (2007), Image and depth form a conventional camera with a coded aperture, ACM Transaction on Graphics, Vol. 26, No. 3.
  10. Nunez, J., Otazu, X., Fors, O., Prade, A., Pala, V., and Arbiol, R. (1991), Multiresolution-based image fusion with additive wavelet decomposition, IEEE Transactions on Geoscience and Reomote Sensing, Vol. 37, No. 3, pp. 1204-1211.
  11. Parker, J.A., Kenyon, R.V., and Troxel, D.E. (1983), Comparison of interpolating methods for image resampling, IEEE Transaction on Medical Imaging, Vol. 2, No. 1, pp. 31-39. https://doi.org/10.1109/TMI.1983.4307610
  12. Ranchin, T., and Wald, L. (2000), Fusion of High Spatial and Spectral Resolution Images: The ARSIS Concept and Its application, Photogrammetric Engineering and Remote Sensing, Vol. 66, No. 1, pp. 49-61.
  13. Rabmani, S., Strait, M., Merkurjev, D., Moeller., M., and Wittman, T. (2010), An adaptive IHS pan-sharpening method, IEEE Goscience and Remote Sensing Letters, Vol. 7, No. 4, pp. 746-750. https://doi.org/10.1109/LGRS.2010.2046715
  14. Shepp, L.A., and Vardi, Y. (1982), Maximum likelihood reconstruction for emission tomography, IEEE Transactions on Medical Imaging, Vol. 1, No. 2, pp. 113- 122. https://doi.org/10.1109/TMI.1982.4307558
  15. Wang, Z., and Bovik, A.C. (2002), Universal Image Quality Index, IEEE Signal Processing Letters, Vol. 9, No. 3, pp. 81-84. https://doi.org/10.1109/97.995823
  16. Wang, Z., Ziou, D., Armenakis, C., Li, D., and Li, Q. (2005), A comparative analysis of image fusion methods, IEEE Transactions on Geoscience and Reomote Sensing, Vol. 43, No. 6, pp. 1391-1420. https://doi.org/10.1109/TGRS.2005.846874
  17. Zhang, Y. (2004), Understanding image fusion, Photogrammetric Engineering and Remote Sensing, Vol. 70, No. 6, pp. 653-660.

Cited by

  1. 고해상도 SAR와 광학영상의 고주파 정보를 이용한 다중센서 융합 vol.30, pp.1, 2011, https://doi.org/10.7848/ksgpc.2012.30.1.075
  2. 농업관측을 위한 KOMPSAT-3 위성의 Spectral Band Adjustment Factor 적용성 평가 vol.34, pp.6, 2011, https://doi.org/10.7780/kjrs.2018.34.6.3.5