• Title/Summary/Keyword: spectral edge frequency

Search Result 32, Processing Time 0.029 seconds

The Application of Quantitative Electroencephalography (Spectral Edge Frequency 95) to Evaluate Sedation in Dogs (개에서 진정 평가를 위한 정량적 뇌파검사의 적용)

  • Kim Min-Su;Nam Tchi-Chou
    • Journal of Veterinary Clinics
    • /
    • v.23 no.1
    • /
    • pp.31-35
    • /
    • 2006
  • This study was performed to evaluate sedation with quantitative electroencephalography (EEG) analysis in dogs. EEG is used to evaluate objectively the effects of CNS acting with brain and behavioral changes. Especially, spectral edge frequency 95 (SEF 95) parameter is an effective method to determine the sedative status. The SEF 95 is the frequency below 95% of the total power. Twelve healthy intact male Miniature Schnauzer dogs, which did not show any neurological abnormalities and disease, were used for the study. EEG electrodes were inserted in subcutaneous tissue over the calvaria without entering adjacent muscles. The EEG data were acquired and analyzed by EEG raw wave and spectral edge frequency 95 analysis. After the administration of sedatives, the SEF 95 values were shown the significant changes compared with the normal state In all groups (p<0.05). It is suggested that SEF 95 analysis is useful method for assessing the state of sedation in dogs.

Downlink Transmit Power Allocation in Soft Fractional Frequency Reuse Systems

  • Kim, Dong-Hee;Ahn, Jae-Young;Kim, Ho-Joon
    • ETRI Journal
    • /
    • v.33 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • Downlink transmit power allocation schemes are proposed for soft fractional frequency reuse (FFR) in loose and tightly coordinated systems. The transmit powers are allocated so that the loss of spectral efficiency from the soft FFR is minimized, and the required cell edge user throughput is guaranteed. The effect of the soft FFR on spectral efficiency is evaluated depending on the power allocation schemes and the number of subbands. Results show that the loss of spectral efficiency from the soft FFR can be reduced by configuring an appropriate number of subbands in the loosely coordinated systems. In tightly coordinated systems, results show that the loss of spectral efficiency can be minimized regardless of the number of subbands due to its fast coordination.

Frequency-Dependent Characteristics of Shielded Single, Coupled and Edge-Offset Microstrip Structures (차폐된 단일, 결합 및 Edge-Offset 마이크로 스트립 구조의 주파수 의존특성)

  • 홍문환;홍의석;오영환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.11 no.6
    • /
    • pp.388-395
    • /
    • 1986
  • Dispersion characteristics of shielded single, coupled and edge-offset microstrip structures are investigated by using hybrid mode analysis with Galerkin's method in the spectral domain. Two new basis functions for the longitudinal strip current are proposed and convergence rates of the solutions for the basis functions are compared. Current distribution of the coupled line is obtaind from that of the single line by using shift theorem of the Fourier transform. In addition, effects of off-centered inner strip conductor on dispersion are also discussed Numerical results include various structual parameters and are compared with other available data and good agreements are observed.

  • PDF

Implementation of EEG Artifact Removal Process Based on Bispectrum Analysis (바이스펙트럼 분석 기반의 뇌파 Artifact 제거 프로세스 구현)

  • Park, Junmo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.2
    • /
    • pp.63-69
    • /
    • 2019
  • In this study, bispectrum analysis method introduced to reduce variability of SEF(spectral edge frequency) and MF(median frequency), which are the anesthetic depth indexes extracted by EEG spectral analysis. Bispectrum analysis is an analytical method that can confirm the nonlinearity of EEG. Signal measurement and analysis in the surgical environment should take into consideration various external artifact factors. Bispectrum analysis can confirm the presence of externally introduced artifacts, thereby effectively eliminating artifacts that affect the EEG signal. By applying bispectrum parameters, real-time variability of the anesthetic depth parameters SEF, MF could be reduced. Elimination of variability makes it possible to use SEF, MF as a real-time index during surgery.

Development for the Evaluation Index of an Anesthesia Depth using the Bispectrum Analysis (Bispectrum 분석을 이용한 마취 심도 평가 지표 개발)

  • Park, Jun-Mo;Ye, Soo-Young;Nam, Ki-Gon;Jeon, Gye-Rok
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.750-755
    • /
    • 2007
  • The linear SEF (Spectral Edge Frequency) parameter and spectrum analysis method can not reflect the non-linear of EEG. This method can not contribute to acquire real time analysis and obtain a high confidence in the clinic due to low discrimination. To solve the problems, the development of a new index is carried out using the bispectrum analyzing the EEG including the non-linear characteristic. At the bispectrum analysis of the 2 dimension, the most significant's power spectrum density peaks appeared much at the specific area in awake and anesthesia state. Because many peaks are showed at the specific area in the frequency coordinate, these points are used to create the new index. Range of the index is 0-100. At the anesthesia, the index is 20-50 and at the awake, the index is 90-60. New index can discriminate the awake and anesthesia state.

The Effects of Tramadol on Electroencephalographic Spectral Parameters and Analgesia in Rats

  • Jang, Hwan-Soo;Jang, Il-Sung;Lee, Maan-Gee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.3
    • /
    • pp.191-198
    • /
    • 2010
  • The effects of different doses of tramadol on analgesia and electroencephalographic (EEG) spectralparameters were compared in rats. Saline or tramadol 5, 10, 20 or 40 mg/kg was administered. The degree of analgesia was evaluated by tail-flick latency, and the degree of seizure was measured using numerical seizure score (NSS). Additionally, band powers, median power frequency and spectral edge frequency 95 were measured to quantify the EEG response. All doses of tramadol produced spike-wave discharge. Tramadol significantly and dose-dependently increased the analgesia, but these effects did not correspond with the changes in the EEG spectral parameters. NSS significantly increased in the Tramadol 20 and 40 mg/kg treatment groups compared to the Control and TRA5 groups, and two rats given 40 mg/kg had convulsions. In conclusion, tramadol dose-dependently increased the analgesic effect, and the 10 mg/kg dose appears to be a reliable clinical dose for analgesia in rats, but dose-dependent increases in analgesia and seizure severity did not correlate with EEG spectral parameters.

Spectral and Energy Efficient Spatially Modulated Non-Orthogonal Multiple Access (NOMA) For 5G (5G를 위한 주파수 및 에너지 효율적인 공간 변조 비-직교 다중 접속 기법)

  • Irfan, Mohammad;Kim, Jin Woo;Shin, Soo Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.8
    • /
    • pp.1507-1514
    • /
    • 2015
  • Non-orthogonal multiple access (NOMA) is a promising candidate for 5G networks. NOMA achieves superior spectral efficiency than conventional orthogonal multiple access (OMA), as in NOMA multiple users uses the same time and frequency resources. Multiple-input-multiple-output (MIMO) is one another promising technique that can enhance system performance. In this paper we present a spectral and energy efficient multiple antenna based NOMA scheme, known as spatially modulated NOMA. In the proposed scheme the cell edge users are multiplexed in spatial domain, which means the information to cell edge users is conveyed using the transmit antenna indices. In NOMA the performance of cell edge users are deeply effected as it treats signals of others as noise. The proposed scheme achieves superior spectral efficiency than the conventional NOMA. The number of decoding steps involved in decoding NOMA signal reduces by one as cell edge user is multiplexed in spatial domain. The proposed scheme is more energy efficient as compare to conventional NOMA. All of the three gains high spectral, energy efficiency and one step reduction in decoding comes at cost of multiple transmit antennas at base station.

Novel Beamforming and Scheduling Method for Interference Mitigation at Cell Edge (셀 경계 지역 간섭 완화를 위한 효율적 빔포밍 및 스케쥴링 방법)

  • Kim, Kyung Hoon;Choi, Seung Won
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.4
    • /
    • pp.129-133
    • /
    • 2012
  • Coordinated multi-point transmission (CoMP) is a candidate technique for next generation cellular communications systems. One of the primary elements discussed in LTE-Advanced technology is CoMP, which can improve cell edge user data rate as well as spectral efficiency due to multiple input multiple output - orthogonal frequency division multiplex (MIMO-OFDM). We consider a system with multiple cells in which base stations coordinate with each other by sharing user channel state information (CSI), which mitigates inter cell interference (ICI), especially for users located at the cell edge. We introduce a new user scheduling method of ICI cancellation and the loss reduction of effective channel gain during the beamforming process, the proposed method improves the system sum rate, when compared to the conventional method by an average of 0.55bps/Hz in different number of total users per cell. It also outperforms the conventional method by approximately 0.38bps/Hz using different SNRs.

Modification-robust contents based motion picture searching method (변형에 강인한 내용기반 동영상 검색방법)

  • Choi, Gab-Keun;Kim, Soon-Hyob
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.215-217
    • /
    • 2008
  • The most widely used method for searching contents of mot ion picture compares contents by extracted cuts. The cut extract ion methods, such as CHD(Color Histogram Difference) or ECR(Edge Change Ratio), are very weak at modifications such as cropping, resizing and low bit rate. The suggested method uses audio contents for indexing and searching to make search be robust against these modification. Scenes of audio contents are extracted for modification-robust search. And based on these scenes, make spectral powers binary on each frequency bin. in the time-frequency domain. The suggested method shows failure rate less than 1% on the false positive error and the true negative error to the modified(using cropping, clipping, row bit rate, addtive frame) contents.

  • PDF

Fragrance Chemicals in the Essential Oil of Mentha arvensis Reduce Levels of Mental Stress (박하(Mentha arvensis) 향료의 향기성분이 정신적 스트레스 완화에 미치는 효과)

  • Cho, Haeme;Sowndhararajan, Kandhasamy;Jung, Ji-Wook;Jhoo, Jin-Woo;Kim, Songmun
    • Journal of Life Science
    • /
    • v.23 no.7
    • /
    • pp.933-940
    • /
    • 2013
  • The aim of this work was to determine the chemical composition of essential oil from aerial partsof Mentha arvensis L. f. piperascens (MAO) and to evaluate the effect of its fragrant chemicals on electroencephalographic (EEG) activity of human brain. The MAO was obtained by supercritical $CO_2$ extraction. The maximum yield was 2.38% at conditions of $70^{\circ}C$ and 200 bar. There were 32 volatile chemicals with 6 alcohols (67.11%), 13 hydrocarbons (17.05%), 9 esters (11.50%), 2 ketones (7.16%), 1 oxide (2.77%), and 1 aldehyde (0.56%). The major components were (Z,Z,Z)-9,12,15-octadecatrien-1-ol (50.06%), 2-hydroxy-4-methoxyacetophenone (7.50%), and 3,4-dihydro-8-hydroxy-3-methyl-1H-2-benzopyran-1-one (6.60%). Results of the EEG study showed that inhalation of MAO significantly changed the EEG power spectrum values of relative gamma, relative fast alpha, and spectral edge frequency 90%. During the inhalation of MAO, the value of relative fast alpha was significantly increased (p<0.05). On the other hand, the values of gamma and the spectral edge frequency 90% were significantly decreased (p<0.05). The present study suggests that fragrant chemicals of essential oil of M. arvensis reduce the level of mental stress and that they could be used in the treatment of psychophysiological disorders.