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ABSTRACT Dispersion characteristics of shielded single, coupled and edge-offset microstrip structures are inves-
tigated by using hybrid mode analysis with Galerkin’s method in the spectral domain. Two new basis functions for
the longitudinal strip current are proposed and convergence rates of the solutions for the basis functions are com-
pared. Current distribution of the coupled line is obtaind from that of the single line by using shift theorem of the
Fourier transform. In addition, effects of off-centered inner strip conductor on dispersion are also discussed.
Numerical results include various structural parameters and are compared with other available data and good agree-

ments are observed.

I. INTRODUCTION analysis.

In quasi-static analysis''™, pure TEM

Various methods of microstrip analysis may
be largely devided into two groups; the one is
quasi-static analysis and the other is full-wave
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mode propagation is assumed and line character-
istics are calculated from the electrostatic capa-
citance of the structure while in full-wave analysis,
parameters of the structure are obtained by solving
wave equations rigorously. At lower frequencies
quasi-static approximation is adequate for design-
ing circuits, however at higher frequencies this
approach is not valid because the parameters
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of the microstrip begin to change as frequency.
This dispersive characteristic of the microstrip
is due to propagation of hybrid modes ' .

With the increasing use of the microstrip line
circuits at higher frequencies, a number of workers
have studied dispersion properties of the micro-
strip line. Singular integral equation approach
® " Fourier expansion method ® | moment
method'” and spectral domain techniques® 1,
and several other methods of analysis have been
used to calculate dispersion properties of the
microstrip line. Among those, the spectral domain
technique has numerical efficiency, which is
mainly due to the fact that solutions in the tech-
niques are extracted from algebraic equations
rather than from coupled infegral equations
typically appearing in the conventional space
domain approaches.

In this paper, hybrid mode formulation is
used in the spectral domain to calculate dispersion
properties of single, coupled and edge-offset
microstrip in shielded enclosure. Several basis
functions for the longtudinal strip current are
considered and convergence rates of the solution
for the basis functions are compared. They
include two new functions that have not been
used so far, which have a simpler Fourjer

transform than other basis functions.

II. FORMULATION OF THE PROBLEM

Fig. 1 shows the cross section of the shielded
microstrip line to be analysed. First, the structure
is assumed to be uniform and infinitely extended
in the z direction. It is also assumed that strip
thickness is negligible and all the conductors and

dielectrics are lossless.
Modes existing in the structure are not pure

TE or TM modes but hybrid modes.
known that hybrid field components can be ex-

It is well

pressed in terms of superposition of the TE and
TM fields which are derivable from the corres-
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Fig 1 Shielded Microstrip Structure.

ponding scalar potential ¢ and ¢". For instance

j -~ ¢%i(x, y) EXP (~jB2)

#"i(x, y) EXP(—jpBz)
)

ki=w’eu€rp,

ke = w® € po=k¢

where, i=1, 2 designates each region and w
is operating frequency, @ is unknown propagation
constant, €, and #, is free space permittivity
and permeability, respectively. The finite Fourier
transforms of the scalar potentials are defined as

#ri(n, y) - Sja;ﬁpi(x,y) EXP(jknx) dx (2)

p=~e or h, i=1 or 2

where, kn is discrete Fourier transform
- 1/2)m/a for even mode,
n7 /a for odd mode (n=1,2,....). In the spectral
domain, the field quantities are now

variable defined by(n

Ki® B yei(n, y) EXP(—g2)

(3)
N k-
Hzi = j B . $%(n, y) EXP(—j B2)
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Other field components can be easily derived
from the Maxwell’s equations. Applying boundary
conditions at y=0, d+h and continuity equations
at y=d, some mathematical manipulations lead

following coupled set of equations.

Guln, 8)Jx(n)+Gu(n, B)Jz(n)=Ezn)

N ) _ (4)
Ga(n, 8)Jx(n)+ Gz (n, B)Jz(n)=Ex{n)
where

Gui=Ga— knf (7:tanh%h | geytanh 7, d) /det
Glz' [( €rfip ko2 ﬂz) Y.tan h )’zh .

ur(ké B ) ntanh nd] /det

n- [(erptekd kd) yatanh 7:hi
pe(k¢ ki) ntanh ynd) / det
det={ ntanh»d+ €.y,tanh 7:h)
{ neoth nd 1 mry:coth yqh)
= kil B* eprky
yi—kat Bk

where, Gn (n, #) - G2 (n, £ )are actually
the Fourier transforms of dyadic Green’s function
components, and }z(n), 3'x(n) and Ez(n), I:Zx(n)
are Fourier transforms of the longitudinal, trans-
verse strip currents and electric fields, respectively.
Equation (4) contains four unknowns so, in order
to solve these equations Galerkin’s method is
applied in the spectral domain. The first step
is to expand the unknown ]z(n), Jx(n) in terms
of some known basis functions Jzm(n), Jxm(n);

- Sdmlum(n), Jx - 3 dmJxm(n) (5

where, cm, dm is unknown constant. The
basis functions ]zm(n), :fxm(n) must be chosen
that their inverse Fourier transforms are non
zero only on the strip | X | <W.After substitut-
ing (5) into (4), and taking inner products of the
with the Dbasis

resulting equations functions
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Jzi(n), jxi(n) for different values of i, we obtain

following matrix equations.

2.1 N

M
>, Kimem -
m m-

"1

where,
Kim (8) - rgl Jzi(n) Gu(n, 8) Jxm(n)
L2 L N
Kim (8) nZI Jz1(n) G (n, 8) Jzm(n)
o o ~ ~
Kim (8) nz:l‘in(n)Gzl(n,ﬂ,‘ Jxm(n)
Kim (8) = 3 Jyitn) Ge (n, #) Jzm(n) (7

In the derivation of right side of equation
(6), Parseval’s theorem is used because the electric
fields and surface strip currents are orthogonal
in the space domain, that is

w ~ 1 +a
S onitm B o |7 50 Ea(x dx= 0

2n ~a

The simultaneous equation (6) is now solved
for the propagation constant by setting determi-
nant of coefficient matrix equal to zero and by
seeking the roots of the resulting equation.

III. NUMERICAL COMPUTATION AND
RESULTS

In the present method, the solution can be
systematically improved by increasing the size
of matrix (M+N), but the size of matrix can be
held small if the first few basis functions are well
chosen. Therefore choice of basis function is very
important in this method. The results have been
calculated for two choices of matrix size; 1) N=1,
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2) N=M=]
(first-order approximation). Since the differences

M=0 (zero-order approximation),

between results of zero and first order approxima-
tion are very small, only zero-order results are

plotted.

A. Single Microstrip Line

The dominant mode of the single line is
lowest order Ez even-Hz odd (EHo) mode 18
which approaches quasi-TEM mode at lower
frequency. For the dominant mode, following
basis functions have been chosen for Jzi(x) usual-

ly.

1
JaX) =———e—————, (a)
“ VIS X/W)?
for —W<X<W
= 0, otherwise
1
sz(X)z—zvV[l+lX/W|3] (b)

for —W<X<W

= (0, otherwise

In this paper, two basis functions for the long-
itudinal strip current are proposed which have a

simpler Fourier transform. Those are
Jz,(X)=VlVCOSH(KX/ W), (¢)

for —W<X<W
= (0, otherwise

K ! some constant

Ja(X)=(X/W)? (d)
for —W<X<W

= (0, otherwise

Fourier transform of (a) is known as zero-
order Bessel function of first kind and Fourier
transform of (b) is given in{7]. Now Fourier

transforms of (c), (d) are given as follow

- 2W
Jaln) = ey

(KnW sin(KaW) cos h(K)

+ Kecos (knW) sin h{ K)) ()

- 2 A L
J“(n):AkaH [ knWsin (knW)+

. _ 2sin(kaW) /

+ 2cos{ knW) oW (d)

Fig. 2, 3 shows the effective dielectric con-
stant computed by above basis functions. The
definition of the effective dielectric constant

€orr is

o= () ()

The results indicate that one of the basis
function proposed in this paper, COSH(KX/W)
produces good agreements with results for Max-
well distribution function (a) (within 0.3 %)
requiring less Fourier terms to obtain accuracy
of 0.1 % result for including 300 Fourier terms in
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Fig 2 Convergence Rate for the Basis Functions.
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Fig 3 eeff versus frequency for thc Basis Functions.

Another basis function (X/W)?
produces also good results in the ratio 2W/d = G.2.

infinite series.

However differences from the other data become
serious when the ratio increases and convergence
rates are relatively slow.

The effective dielectric constant. €ers ap-

proaches € in the high frequency limit, indicat-
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Fig 4 Influence of metallic enclosure.
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ing that at the high frequencies, all the energy
tends to be confined in the dielectric substrate.
Therefore the guided wavelength approaches the
wavelength in the substrate material, and influen-
ces of shielding wall decrease as frequency inc-
reases. This result plotted in Fig. 4.

B. Coupled Microstrip Line

A pair of coupled line (fig. 5) can support
one even and one odd dominant mode. The cur-

rent distribution of the coupled microstrip can be

h
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Fig 5 Coupled Microstrip Line.

obtained from that of the single microstrip. Let
fz(l) and j'z(2) refers to the Fourier transform
of current distribution on the coupled line to the
ieft of the origin (x=0) and right of the origin,
respectively. Then with the time shift theorem

of the Fourier transform we get
J, 1 EXP (iKW 1 S)0 Jaln),
J220 EXP KW i S Jz(n)

J,(n) © E.T of currunt distribution for the

single microstrip.

In the even mode, the longitudinal currents
on both strips are equal in magnitude while in
the odd mode. they are equal in magnitude but
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opposite in phase. Therefore current distribution
function of the coupled line Tzc(n) can be written

as

Jae(n)=(SEXP (—jkn(W+ S))
+EXP (jkn (W+S))}Jz(n)

6 =+ 1 for even mode

1 for odd mode

Numerical results for coupled microstrip
line are plotted in fig. 6 with those of Krage and
Haddad ® .
agreed, especially in odd mode case. However
there are 1 % differences between the two results

It is seen that two results are well

in even mode case, these differences may be re-
duced by increasing the size of matrix but addi-
tive computation time is required.
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Fig 6 Even and Odd Mode Characteristics of the
Coupled Microstrip Line.

Fig. 7 shows frequency dependence of coupl-
ed microstrip line with varying spacing between
strips. It is also found that increasing spacing
increases dispersion in odd mode but non-monoto-

nical behaviors are presented in even mode. And
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Fig 7 Changes of €ess with Varying Spacings er=
8.875, 2a=10d, d+h=2a, 2w/d=1, d=1.27 mm).

coupled line propagating with even mode has
more dispersive character.

C. Edge-Offset Structure

If the strip conductor of the single line is
displaced from the center(x=0), it refers to edge-
offset microstrip structure. Fig. 8 shows a edge-
offset structure which has a displaced strip by dS
to the side wall. The field distributions of this
structure can be thought as odd mode case of
coupled microstrip line having same dielectric
media and two times of dimension in a because of
electric wall formed between strips. Therefore
it is expected that propagation constant of the
edge-offset structure decreases as displacement
(dS) increases.

T
[\
®
>

i

Fig 8 Edge-offset Microstrip structure.
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Calculated results are compared with |
which based on quasi-static approximation. It can
be shown that two results are agreed well at low

frequency in fig. 9.

Preeent method
L x XX Quesi-static eppx.[3]

6.2 4 dS/2w = 0.0

Effective dlalectric conatent €./

+ + 4= - ey
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FREQUENTY (B}

Fig 9 Effects of Off-Centered strip Conductor.

Finally, half interval search and method of
false position are used in all root searching proce-
dures and polynomial approximations 8 are
used to estimate zero-order Bessel functions of
first kind. Typical computation time was about
0.8s/point for single microstrip, 1.2 s/point for
coupled microstrip on Cyber 170/825 system
when COSH(KX/W) was used to zero-order ap-

proximation.

IV. CONCLUSION

Frequency dependent characteristics of shield-
ed single, coupled and edge-offset microstrip
lines are investigated by using hybrid mode analy-
sis with Galerkin’s method in the spectral domain.
Of the two proposed basis functions, COSH
(KX/W) produced good results and less Fourier
terms are required than other basis functions for

given accuracy. It is found that coupled line
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propagating with even mode presents more dis-
persive character and metallic enclosure does not
affect to the effective dielectric constant when the
ratio a/d, h/d greater than 4~5 at high frequency
(above 15GHz).
tions in this paper restricted to the dominant

Although numerical computa-

mode only, high order mode solution can be
obtained by replacing basis functions for specific
mode of interest. It is expected that these results
are useful for MIC (Microwave Integrated Cir-
cuits) design at high frequencies.
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