• Title/Summary/Keyword: spectral decomposition

Search Result 177, Processing Time 0.024 seconds

Truncation Parameter Selection in Binary Choice Models (이항 선택 모형에서의 절단 모수 선택)

  • Kim, Kwang-Rae;Cho, Kyu-Dong;Koo, Ja-Yong
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.6
    • /
    • pp.811-827
    • /
    • 2010
  • This paper deals with a density estimation method in binary choice models that can be regarded as a statistical inverse problem. We use an orthogonal basis to estimate density function and consider the choice of an appropriate truncation parameter to reflect the model complexity and the prediction accuracy. We propose a data-dependent rule to choose the truncation parameter in the context of binary choice models. A numerical simulation is provided to illustrate the performance of the proposed method.

Stability of Carthamin from Carthamus tinctorius in Aqueous Solution;pH and temperature effects

  • Kim, Jun-Bum;Paik, Young-Sook
    • Archives of Pharmacal Research
    • /
    • v.20 no.6
    • /
    • pp.643-646
    • /
    • 1997
  • Thermal stability of a red pigment, carthamin, frm Carthamus tinctorius was investigated to explore possible applications as natural color additives for foods, cosmetics, and nutraceuticals. Degree of degradation reactions of carthamin at acidic, neutral and alkaline conditions were determined with UV/V is spectral measurements. Decomposition half lives of carthamin at 25.deg. C were 4.0 h, 5.1 h, and 12.5 h at pH 5.0, pH 7.0, and pH 12.0, respectively, indicating that carthamin is much more stable at alkaline pH than acidic or neutral conditions. The activation energies of carthamin at pH 5.0, pH 7.0, and pH 12.0 were 15.6, 15.7 and 16.8 kcal/mol, respectively.

  • PDF

LOCAL SPECTRAL THEORY II

  • YOO, JONG-KWANG
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.3_4
    • /
    • pp.487-496
    • /
    • 2021
  • In this paper we show that if A ∈ L(X) and B ∈ L(Y), X and Y complex Banach spaces, then A ⊕ B ∈ L(X ⊕ Y) is subscalar if and only if both A and B are subscalar. We also prove that if A, Q ∈ L(X) satisfies AQ = QA and Qp = 0 for some nonnegative integer p, then A has property (C) (resp. property (𝛽)) if and only if so does A + Q (resp. property (𝛽)). Finally, we show that A ∈ L(X, Y) and B, C ∈ L(Y, X) satisfying operator equation ABA = ACA and BA ∈ L(X) is subscalar with property (𝛿) then both Lat(BA) and Lat(AC) are non-trivial.

Improvement of Calibration Method for a Dual-rotating Compensator Type Spectroscopic Ellipsometer

  • Byeong-Kwan Yang;Jin Seung Kim
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.428-434
    • /
    • 2023
  • The compensators used in spectroscopic ellipsometers are usually assumed to be ideal linear waveplates. In reality, however, they are elliptical waveplates, because they are usually made by bonding two or more linear waveplates of different materials with slight misalignment. This induces systematic error when they are modeled as linear waveplates. We propose an improved calibration method based on an optical model that regards an elliptical waveplate as a combination of a circular waveplate (rotator) and a linear waveplate. The method allows elimination of the systematic error, and the residual error of optic axis measurement is reduced to 0.025 degrees in the spectral range of 450-800 nm.

Estimation of Displacement Responses Using the Wavelet Decomposition Signal (웨이블릿 분해신호를 이용한 변위응답의 추정)

  • Jung, Beom-Seok;Kim, Nam-Sik;Kook, Seung-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.347-354
    • /
    • 2006
  • In this paper we have attempted to bring the wavelet transform theory to the dynamic response conversion algorithm. This algorithm is proposed for the problem of estimating the displacement data by defining the transformed responses. In this algerian, the displacement response can be obtained from the measured acceleration records by integration without requiring the knowledge of the initial velocity and displacement information. The advantage of the wavelet transform over either a pure spectral or temporal decomposition of the signal is that the pertinent signals features can be characterized in the time-frequency plane. In the response conversion procedure using the wavelet decomposition signals, not only the static component can be extracted, but also the dynamic displacement component can be separated by the structural mode from the identified displacement response. The applicability of the technique is tested by an example problem using the real bridge's superstructure under several cases of moving load. If the reliability of the identified responses is ensured, it is expected that the proposed method for estimating the impact factor can be useful in the bridge's dynamic test. This method can be useful in those practical cases when the direct measurement of the displacement is difficult as in the dynamic studies of huge structure.

Application of Multispectral Remotely Sensed Imagery for the Characterization of Complex Coastal Wetland Ecosystems of southern India: A Special Emphasis on Comparing Soft and Hard Classification Methods

  • Shanmugam, Palanisamy;Ahn, Yu-Hwan;Sanjeevi , Shanmugam
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.3
    • /
    • pp.189-211
    • /
    • 2005
  • This paper makes an effort to compare the recently evolved soft classification method based on Linear Spectral Mixture Modeling (LSMM) with the traditional hard classification methods based on Iterative Self-Organizing Data Analysis (ISODATA) and Maximum Likelihood Classification (MLC) algorithms in order to achieve appropriate results for mapping, monitoring and preserving valuable coastal wetland ecosystems of southern India using Indian Remote Sensing Satellite (IRS) 1C/1D LISS-III and Landsat-5 Thematic Mapper image data. ISODATA and MLC methods were attempted on these satellite image data to produce maps of 5, 10, 15 and 20 wetland classes for each of three contrast coastal wetland sites, Pitchavaram, Vedaranniyam and Rameswaram. The accuracy of the derived classes was assessed with the simplest descriptive statistic technique called overall accuracy and a discrete multivariate technique called KAPPA accuracy. ISODATA classification resulted in maps with poor accuracy compared to MLC classification that produced maps with improved accuracy. However, there was a systematic decrease in overall accuracy and KAPPA accuracy, when more number of classes was derived from IRS-1C/1D and Landsat-5 TM imagery by ISODATA and MLC. There were two principal factors for the decreased classification accuracy, namely spectral overlapping/confusion and inadequate spatial resolution of the sensors. Compared to the former, the limited instantaneous field of view (IFOV) of these sensors caused occurrence of number of mixture pixels (mixels) in the image and its effect on the classification process was a major problem to deriving accurate wetland cover types, in spite of the increasing spatial resolution of new generation Earth Observation Sensors (EOS). In order to improve the classification accuracy, a soft classification method based on Linear Spectral Mixture Modeling (LSMM) was described to calculate the spectral mixture and classify IRS-1C/1D LISS-III and Landsat-5 TM Imagery. This method considered number of reflectance end-members that form the scene spectra, followed by the determination of their nature and finally the decomposition of the spectra into their endmembers. To evaluate the LSMM areal estimates, resulted fractional end-members were compared with normalized difference vegetation index (NDVI), ground truth data, as well as those estimates derived from the traditional hard classifier (MLC). The findings revealed that NDVI values and vegetation fractions were positively correlated ($r^2$= 0.96, 0.95 and 0.92 for Rameswaram, Vedaranniyam and Pitchavaram respectively) and NDVI and soil fraction values were negatively correlated ($r^2$ =0.53, 0.39 and 0.13), indicating the reliability of the sub-pixel classification. Comparing with ground truth data, the precision of LSMM for deriving moisture fraction was 92% and 96% for soil fraction. The LSMM in general would seem well suited to locating small wetland habitats which occurred as sub-pixel inclusions, and to representing continuous gradations between different habitat types.

Baseline Survey Seismic Attribute Analysis for CO2 Monitoring on the Aquistore CCS Project, Canada (캐나다 아퀴스토어 CCS 프로젝트의 이산화탄소 모니터링을 위한 Baseline 탄성파 속성분석)

  • Cheong, Snons;Kim, Byoung-Yeop;Bae, Jaeyu
    • Economic and Environmental Geology
    • /
    • v.46 no.6
    • /
    • pp.485-494
    • /
    • 2013
  • $CO_2$ Monitoring, Mitigation and Verification (MMV) is the essential part in the Carbon Capture and Storage (CCS) project in order to assure the storage permanence economically and environmentally. In large-scale CCS projects in the world, the seismic time-lapse survey is a key technology for monitoring the behavior of injected $CO_2$. In this study, we developed a basic process procedure for 3-D seismic baseline data from the Aquistore project, Estevan, Canada. Major target formations of Aquistore CCS project are the Winnipeg and the Deadwood sandstone formations located between 1,800 and 1,900 ms in traveltime. The analysis of trace energy and similarity attributes of seismic data followed by spectral decomposition are carried out for the characterization of $CO_2$ injection zone. High trace energies are concentrated in the northern part of the survey area at 1,800 ms and in the southern part at 1,850 ms in traveltime. The sandstone dominant regions are well recognized with high reflectivity by the trace energy analysis. Similarity attributes show two structural discontinuities trending the NW-SE direction at the target depth. Spectral decomposition of 5, 20 and 40 Hz frequency contents discriminated the successive E-W depositional events at the center of the research area. Additional noise rejection and stratigraphic interpretation on the baseline data followed by applying appropriate imaging technique will be helpful to investigate the differences between baseline data and multi-vintage monitor data.

Robust Multi-channel Wiener Filter for Suppressing Noise in Microphone Array Signal (마이크로폰 어레이 신호의 잡음 제거를 위한 강인한 다채널 위너 필터)

  • Jung, Junyoung;Kim, Gibak
    • Journal of Broadcast Engineering
    • /
    • v.23 no.4
    • /
    • pp.519-525
    • /
    • 2018
  • This paper deals with noise suppression of multi-channel data captured by microphone array using multi-channel Wiener filter. Multi-channel Wiener filter does not rely on information about the direction of the target speech and can be partitioned into an MVDR (Minimum Variance Distortionless Response) spatial filter and a single channel spectral filter. The acoustic transfer function between the single speech source and microphones can be estimated by subspace decomposition of multi-channel Wiener filter. The errors are incurred in the estimation of the acoustic transfer function due to the errors in the estimation of correlation matrices, which in turn results in speech distortion in the MVDR filter. To alleviate the speech distortion in the MVDR filter, diagonal loading is applied. In the experiments, database with seven microphones was used and MFCC distance was measured to demonstrate the effectiveness of the diagonal loading.

Estimation of Halftone Cell Information by Analyzing Distribution of Halftone Dots and Refining Location of Their Spectral Peaks (해프톤 도트 분포 분석 및 주파수 피크 위치 정제에 의한 해프톤 셀 정보 추정)

  • 한영미;김민환
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.2
    • /
    • pp.116-129
    • /
    • 2001
  • To improve the performance of the inverse halftoning, smoothing masks should be designed optimally by using the accurate information of halftone cells. In this thesis, the method of energy minimization is so defined as to determine the exact information of halftone cell. A heuristic search method is proposed to obtain efficiently the parameters of halftone cells which determine the minimum energy. A halftone-peak modeling method with several functions is proposed and used to get initial values of the parameters. The dimension decomposition technique is also adopted to speed up the search process of energy minimization. Several experiments show that the proposed method extracts correct location of the seed pixel of the halftone cell and the extracted information of the halftone cell can be used to get more exactly smoothed color images. The proposed method can be applied to extract the texture patterns, to separate channel images of a scanned color halftone image, and to extract the moire area in an image.

  • PDF

Long Term Variability of the Sun and Climate Change (태양활동 긴 주기와 기후변화의 연관성 분석)

  • Cho, Il-Hyun;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.395-404
    • /
    • 2008
  • We explore the linkage between the long term variability of the Sun and earth's climate change by analysing periodicities of time series of solar proxies and global temperature anomalies. We apply the power spectral estimation method named as the periodgram to solar proxies and global temperature anomalies. We also decompose global temperature anomalies and reconstructed total solar irradiance into each local variability components by applying the EMD (Empirical Mode Decomposition) and MODWT MRA (Maximal Overlap Discrete Wavelet Multi Resolution Analysis). Powers for solar proxies at low frequencies are lower than those of high frequencies. On the other hand, powers for temperature anomalies show the other way. We fail to decompose components which having lager than 40 year variabilities from EMD, but both residuals are well decomposed respectively. We determine solar induced components from the time series of temperature anomalies and obtain 39% solar contribution on the recent global warming. We discuss the climate system can be approximated with the second order differential equation since the climate sensitivity can only determine the output amplitude of the signal.