• Title/Summary/Keyword: spectral calibration

Search Result 254, Processing Time 0.026 seconds

INLINE NEAR INFRARED (NIR) SPECTROSCOPY FOR PROCESS CONTROL IN POLYMER EXTRUSION

  • Rohe, Thomas;Koelle, Sabine;Becker, Wolfgang;Eisenreich, Norbert;Eyerer, Peter
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1082-1082
    • /
    • 2001
  • Extrusion is one of the most important processes in polymer industry. The characterization of the polymer melt during processing will improve this process noticeably, One possibility of characterizing the actual processed polymer melt is the inline near infrared (NIR) spectroscopy, With this method several polymer properties can be observed during processing, e.g. composition, moisture ormechanical properties of the melt. For this purpose probes for transmission and reflection measurements have been developed, withstanding the high temperatures and pressures appearing during extrusion process (tested up to 300$^{\circ}C$ and 10 ㎫). For the transmission system an optical bypass was developed to eliminate disturbing spectral influences and hence increase the long term stability, which is the prerequisite for an industrial application. Measurements in transmission and reflection produced comparable results (or blending processes, where the prediction error was less than 1%. An optimum RMSEP of only 0.24% was found for preprocessed polymer blends measured in transmission on a laboratory extruder. A transflection measurement allowed for the first time the recording of relevant NIR-spectra in the screw area of an extruder. The application to a (PE+PP) blending process delivered promising results. This new measurement mode allows the observation of the ongoing processes within the screw area, which is of maximum Interest for reactive extrusion processes. Due to economic reasons the calibration transfer between different extrusion systems is also of high importance. Investigations on simulated and real-world spectra showed that a calibration transfer is possible. A new method alternatively to the well-known direct standardization procedures was developed, which is based on an automatic data pretreatment. This procedure delivers comparable results for the calibration transfer. Overall this paper presents concepts, components and algorithms for the inline near infrared (NIR) spectroscopy for polymer extrusion, which allows the use of it in a real industrial extrusion process.

  • PDF

THE EVOLUTION OF THE GALACTIC GLOBULAR CLUSTERS.: I. METAL ABUNDANCE CALIBRATIONS

  • Lee, See-Woo;Park, Nam-Kyu
    • Journal of The Korean Astronomical Society
    • /
    • v.17 no.2
    • /
    • pp.69-103
    • /
    • 1984
  • Five different calibrations of metal abundances of globular clusters are examined and these are compared with metallicity ranking parameters such as $(Sp)_c$, . Q39 and IR-indices. Except for the calibration $[Fe/H]_H$ by the high dispersion echelle analysis. the other calibration scales are correlated with the morphological parameters of red giant branch. In the $[Fe/H]_H$-scale. the clusters later than ${\sim}F8$ have nearly a constant metal abundance. $[Fe/H]_H{\simeq}-1.05$, regradless of morphological characteristics of horizontal branch and red giant branch. By the two fundamental calibration scales of $[Fe/H]_L$ (derived by the low dispersion analysis) and $[Fe/H]_{{\Delta}s}$ (derived by the spectral analysis of RR Lyrae stars). the globular clusters are divided into the halo clusters with [Fe/H]<-1.0 and the disk clusters confined within the galactocentric distance ${\tau}_G=10\;kpc$ and galactic plane distance |z|=3 kpc. In this case the abundance gradient is given by d[Fe/H]/$dr_G{\approx}-0.05\;kpc^{-1}$ and d[Fe/H]/$d|z|{\simeq}-0.08\;kpc^{-1}$ within ${\tau}_G=20\;kpc$ and |z|=10 kpc, respectively. According to these characteristics of the spatial distribution of globular clusters. the chemical evolution of the galactic globular clusters can be accounted for by the two-zone (disk-halo) slow collapse model when the $[Fe/H]_L$-or $[Fe/H]_{{\Delta}s}$-scale is applied. In the case of $[Fe/H]_H$-scale, the one-zone fast collapse model is preferred for the evolution of globular clusters.

  • PDF

Color Correction for Uniformity Illumination using Multispectral Relighting (멀티스펙트럴 재조명을 이용한 균일 조명 색상 보정)

  • Sim, Kyudong;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.22 no.2
    • /
    • pp.207-213
    • /
    • 2017
  • In order to accurately perform multispectral imaging using a multiplexed illumination, intensity of illumination in a scene must be uniform. For image acquisition that requires accurate color information, even if not multispectral imaging, the illumination information must be accurate, and a flat light source or illumination calibration is performed for accurate illumination characteristics. In this paper, we propose a method of color correction to uniformly illuminate an image with non-uniform illumination intensity. The proposed method uses multispectral imaging instead of illumination calibration for color correction. First of all, we perform multispectral imaging with two images obtained from non-uniformity illumination to acquire spectral reflectance. The obtained reflection spectrum is relit as the illumination characteristic of the image obtained from general planar light such as fluorescent light or sunlight. By comparing the image obtained by relighting with the uniformly illuminated image, the non-uniformity of the illumination is confirmed, and the color correction is performed as the image obtained from the uniform image. It is expected that the experimental results will confirm whether the non-uniformity of the illumination is uniformly corrected and reduce the restriction of illumination in obtaining the color information of the image.

Analysis of the Influence of Atmospheric Turbulence on the Ground Calibration of a Star Sensor

  • Xian Ren;Lingyun Wang;Guangxi Li;Bo Cui
    • Current Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.38-44
    • /
    • 2024
  • Under the influence of atmospheric turbulence, a star's point image will shake back and forth erratically, and after exposure the originally small star point will spread into a huge spot, which will affect the ground calibration of the star sensor. To analyze the impact of atmospheric turbulence on the positioning accuracy of the star's center of mass, this paper simulates the atmospheric turbulence phase screen using a method based on a sparse spectrum. It is added to the static-star-simulation device to study the transmission characteristics of atmospheric turbulence in star-point simulation, and to analyze the changes in star points under different atmospheric refractive-index structural constants. The simulation results show that the structure function of the atmospheric turbulence phase screen simulated by the sparse spectral method has an average error of 6.8% compared to the theoretical value, while the classical Fourier-transform method can have an error of up to 23% at low frequencies. By including a simulation in which the phase screen would cause errors in the center-of-mass position of the star point, 100 consecutive images are selected and the average drift variance is obtained for each turbulence scenario; The stronger the turbulence, the larger the drift variance. This study can provide a basis for subsequent improvement of the ground-calibration accuracy of a star sensitizer, and for analyzing and evaluating the effect of atmospheric turbulence on the beam.

Prelaunch Study of Validation for the Geostationary Ocean Color Imager (GOCI) (정지궤도 해색탑재체(GOCI) 자료 검정을 위한 사전연구)

  • Ryu, Joo-Hyung;Moon, Jeong-Eon;Son, Young-Baek;Cho, Seong-Ick;Min, Jee-Eun;Yang, Chan-Su;Ahn, Yu-Hwan;Shim, Jae-Seol
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.251-262
    • /
    • 2010
  • In order to provide quantitative control of the standard products of Geostationary Ocean Color Imager (GOCI), on-board radiometric correction, atmospheric correction, and bio-optical algorithm are obtained continuously by comprehensive and consistent calibration and validation procedures. The calibration/validation for radiometric, atmospheric, and bio-optical data of GOCI uses temperature, salinity, ocean optics, fluorescence, and turbidity data sets from buoy and platform systems, and periodic oceanic environmental data. For calibration and validation of GOCI, we compared radiometric data between in-situ measurement and HyperSAS data installed in the Ieodo ocean research station, and between HyperSAS and SeaWiFS radiance. HyperSAS data were slightly different in in-situ radiance and irradiance, but they did not have spectral shift in absorption bands. Although all radiance bands measured between HyperSAS and SeaWiFS had an average 25% error, the 11% absolute error was relatively lower when atmospheric correction bands were omitted. This error is related to the SeaWiFS standard atmospheric correction process. We have to consider and improve this error rate for calibration and validation of GOCI. A reference target site around Dokdo Island was used for studying calibration and validation of GOCI. In-situ ocean- and bio-optical data were collected during August and October, 2009. Reflectance spectra around Dokdo Island showed optical characteristic of Case-1 Water. Absorption spectra of chlorophyll, suspended matter, and dissolved organic matter also showed their spectral characteristics. MODIS Aqua-derived chlorophyll-a concentration was well correlated with in-situ fluorometer value, which installed in Dokdo buoy. As we strive to solv the problems of radiometric, atmospheric, and bio-optical correction, it is important to be able to progress and improve the future quality of calibration and validation of GOCI.

A Melon Fruit Grading Machine Using a Miniature VIS/NIR Spectrometer: 1. Calibration Models for the Prediction of Soluble Solids Content and Firmness

  • Suh, Sang-Ryong;Lee, Kyeong-Hwan;Yu, Seung-Hwa;Shin, Hwa-Sun;Choi, Young-Soo;Yoo, Soo-Nam
    • Journal of Biosystems Engineering
    • /
    • v.37 no.3
    • /
    • pp.166-176
    • /
    • 2012
  • Purpose: This study was conducted to investigate the potential of interactance mode of NIR spectroscopy technology for the estimation of soluble solids content (SSC) and firmness of muskmelons. Methods: Melon samples were taken from local greenhouses in three different harvesting seasons (experiments 1, 2, and 3). The fruit attributes were measured at the 6 points on an equator of each sample where the spectral data were collected. The prediction models were developed using the original spectral data and the spectral data sets preprocessed by 20 methods. The performance of the models was compared. Results: In the prediction of SSC, the highest coefficient of determination ($R_{cv}{^2}$) values of the cross-validation was 0.755 (standard error of prediction, SEP=$0.89^{\circ}Brix$) with the preprocessing of normalization with range in experiment 1. The highest coefficient of determination in the robustness tests, $R_{rt}{^2}$=0.650 (SEP=$1.03^{\circ}Brix$), was found when the best model of experiment 3 was evaluated with the data set of experiment 2. The best $R_{cv}{^2}$ for the prediction of firmness was 0.715 (SEP=3.63 N) when no preprocessing was applied in experiment 1. The highest $R_{rt}{^2}$ was 0.404 (SEP=5.30 N) when the best model of experiment 3 was applied to the data set of experiment 1. Conclusions: From the test results, it can be concluded that the interactance mode of VIS/NIR spectroscopy technology has a great potential to measure SSC and firmness of thick-skinned muskmelons.

Robust Radiometric and Geometric Correction Methods for Drone-Based Hyperspectral Imaging in Agricultural Applications

  • Hyoung-Sub Shin;Seung-Hwan Go;Jong-Hwa Park
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.3
    • /
    • pp.257-268
    • /
    • 2024
  • Drone-mounted hyperspectral sensors (DHSs) have revolutionized remote sensing in agriculture by offering a cost-effective and flexible platform for high-resolution spectral data acquisition. Their ability to capture data at low altitudes minimizes atmospheric interference, enhancing their utility in agricultural monitoring and management. This study focused on addressing the challenges of radiometric and geometric distortions in preprocessing drone-acquired hyperspectral data. Radiometric correction, using the empirical line method (ELM) and spectral reference panels, effectively removed sensor noise and variations in solar irradiance, resulting in accurate surface reflectance values. Notably, the ELM correction improved reflectance for measured reference panels by 5-55%, resulting in a more uniform spectral profile across wavelengths, further validated by high correlations (0.97-0.99), despite minor deviations observed at specific wavelengths for some reflectors. Geometric correction, utilizing a rubber sheet transformation with ground control points, successfully rectified distortions caused by sensor orientation and flight path variations, ensuring accurate spatial representation within the image. The effectiveness of geometric correction was assessed using root mean square error(RMSE) analysis, revealing minimal errors in both east-west(0.00 to 0.081 m) and north-south directions(0.00 to 0.076 m).The overall position RMSE of 0.031 meters across 100 points demonstrates high geometric accuracy, exceeding industry standards. Additionally, image mosaicking was performed to create a comprehensive representation of the study area. These results demonstrate the effectiveness of the applied preprocessing techniques and highlight the potential of DHSs for precise crop health monitoring and management in smart agriculture. However, further research is needed to address challenges related to data dimensionality, sensor calibration, and reference data availability, as well as exploring alternative correction methods and evaluating their performance in diverse environmental conditions to enhance the robustness and applicability of hyperspectral data processing in agriculture.

ADVANTAGES OF USING ARTIFICIAL NEURAL NETWORKS CALIBRATION TECHNIQUES TO NEAR-INFRARED AGRICULTURAL DATA

  • Buchmann, Nils-Bo;Ian A.Cowe
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1032-1032
    • /
    • 2001
  • Artificial Neural Network (ANN) calibration techniques have been used commercially for agricultural applications since the mid-nineties. Global models, based on transmission data from 850 to 1050 nm, are used routinely to measure protein and moisture in wheat and barley and also moisture in triticale, rye, and oats. These models are currently used commercially in approx. 15 countries throughout the world. Results concerning earlier European ANN models are being published elsewhere. Some of the findings from that study will be discussed here. ANN models have also been developed for coarsely ground samples of compound feed and feed ingredients, again measured in transmission mode from 850 to 1050 nm. The performance of models for pig- and poultry feed will be discussed briefly. These models were developed from a very large data set (more than 20,000 records), and cover a very broad range of finished products. The prediction curves are linear over the entire range for protein, fat moisture, fibre, and starch (measured only on poultry feed), and accuracy is in line with the performance of smaller models based on Partial Least Squares (PLS). A simple bias adjustment is sufficient for calibration transfer across instruments. Recently, we have investigated the possible use of ANN for a different type of NIR spectrometer, based on reflectance data from 1100 to 2500 nm. In one study, based on data for protein, fat, and moisture measured on unground compound feed samples, dedicated ANN models for specific product classes (cattle feed, pig feed, broiler feed, and layers feed) gave moderately better Standard Errors of Prediction (SEP) compared to modified PLS (MPLS). However, if the four product classes were combined into one general calibration model, the performance of the ANN model deteriorated only slightly compared to the class-specific models, while the SEP values for the MPLS predictions doubled. Brix value in molasses is a measure of sugar content. Even with a huge dataset, PLS models were not sufficiently accurate for commercial use. In contrast an ANN model based on the same data improved the accuracy considerably and straightened out non-linearity in the prediction plot. The work of Mr. David Funk (GIPSA, U. S. Department of Agriculture) who has studied the influence of various types of spectral distortions on ANN- and PLS models, thereby providing comparative information on the robustness of these models towards instrument differences, will be discussed. This study was based on data from different classes of North American wheat measured in transmission from 850 to 1050 nm. The distortions studied included the effect of absorbance offset pathlength variation, presence of stray light bandwidth, and wavelength stretch and offset (either individually or combined). It was shown that a global ANN model was much less sensitive to most perturbations than class-specific GIPSA PLS calibrations. It is concluded that ANN models based on large data sets offer substantial advantages over PLS models with respect to accuracy, range of materials that can be handled by a single calibration, stability, transferability, and sensitivity to perturbations.

  • PDF

STANDARDISATION OF NIR INSTRUMENTS, INFLUENCE OF THE CALIBRATION METHODS AND THE SIZE OF THE CLONING SET

  • Dardenne, Pierre;Cowe, Ian-A.;Berzaghi, Paolo;Flinn, Peter-C.;Lagerholm, Martin;Shenk, John-S.;Westerhaus, Mark-O.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1121-1121
    • /
    • 2001
  • A previous study (Berzaghi et al., 2001) evaluated the performance of 3 calibration methods, modified partial least squares (MPLS), local PLS (LOCAL) and artificial neural networks (ANN) on the prediction of the chemical composition of forages, using a large NIR database. The study used forage samples (n=25,977) from Australia, Europe (Belgium, Germany, Italy and Sweden) and North America (Canada and U.S.A) with reference values for moisture, crude protein and neutral detergent fibre content. The spectra of the samples were collected using 10 different Foss NIR Systems instruments, only some of which had been standardized to one master instrument. The aim of the present study was to evaluate the behaviour of these different calibration methods when predicting the same samples measured on different instruments. Twenty-two sealed samples of different kind of forages were measured in duplicate on seven instruments (one master and six slaves). Three sets of near infrared spectra (1100 to 2500nm) were created. The first set consisted of the spectra in their original form (unstandardized); the second set was created using a single sample standardization (Clone1); the third was created using a multiple sample procedure (Clone6). WinISI software (Infrasoft International Inc., Port Mathilda, PA, USA) was used to perform both types of standardization, Clone1 is just a photometric offset between a “master” instrument and the “slave” instrument. Clone6 modifies both the X-axis through a wavelength adjustment and the Y-axis through a simple regression wavelength by wavelength. The Clone1 procedure used one sample spectrally close to the centre of the population. The six samples used in Clone 6 were selected to cover the range of spectral variation in the sample set. The remaining fifteen samples were used to evaluate the performances of the different models. The predicted values for dry matter, protein and neutral detergent fibre from the master Instrument were considered as “reference Y values” when computing the statistics RMSEP, SEPC, R, Bias, Slope, mean GH (global Mahalanobis distance) and mean NH (neighbourhood Mahalanobis distance) for the 6 slave instruments. From the results we conclude that i) all the calibration techniques gave satisfactory results after standardization. Without standardization the predicted data from the slaves would have required slope and bias correction to produce acceptable statistics. ii) Standardization reduced the errors for all calibration methods and parameters tested, reducing not only systematic biases but also random errors. iii) Standardization removed slope effects that were significantly different from 1.0 in most of the cases. iv) Clone1 and Clone6 gave similar results except for NDF where Clone6 gave better RMSEP values than Clone1. v) GH and NH were reduced by half even with very large data sets including unstandardized spectra.

  • PDF

Evaluating Spectral Preprocessing Methods for Visible and Near Infrared Reflectance Spectroscopy to Predict Soil Carbon and Nitrogen in Mountainous Areas (산지토양의 탄소와 질소 예측을 위한 가시 근적외선 분광반사특성 분석의 전처리 방법 비교)

  • Jeong, Gwanyong
    • Journal of the Korean Geographical Society
    • /
    • v.51 no.4
    • /
    • pp.509-523
    • /
    • 2016
  • The soil prediction can provide quantitative soil information for sustainable mountainous ecosystem management. Visible near infrared spectroscopy, one of soil prediction methods, has been applied to predict several soil properties with effective costs, rapid and nondesctructive analysis, and satisfactory accuracy. Spectral preprocessing is a essential procedure to correct noisy spectra for visible near infrared spectroscopy. However, there are no attempts to evaluate various spectral preprocessing methods. We tested 5 different pretreatments, namely continuum removal, Savitzky-Golay filter, discrete wavelet transform, 1st derivative, and 2nd derivative to predict soil carbon(C) and nitrogen(N). Partial least squares regression was used for the prediction method. The total of 153 soil samples was split into 122 samples for calibration and 31 samples for validation. In the all range, absorption was increased with increasing C contents. Specifically, the visible region (650nm and 700nm) showed high values of the correlation coefficient with soil C and N contents. For spectral preprocessing methods, continuum removal had the highest prediction accuracy(Root Mean Square Error) for C(9.53mg/g) and N(0.79mg/g). Therefore, continuum removal was selected as the best preprocessing method. Additionally, there were no distinct differences between Savitzky-Golay filter and discrete wavelet transform for visual assessment and the methods showed similar validation results. According to the results, we also recommended Savitzky-Golay filter that is a simple pre-treatment with continuum removal.

  • PDF