References
- 강신규.John Tenhunen, 2010, "산지복잡지형과 생태적 비균질성: 산지경관의 생산성과 수자원/수질에 관한 생태계 서비스 평가," 한국농림기상학회지, 12(4), 307-316. https://doi.org/10.5532/KJAFM.2010.12.4.307
- 박수진.손연규.홍석영.박찬원.장용선, 2010, "한국 주요 토양유형의 공간적 분포와 토양형성요인을 이용한 예측가능성 평가," 대한지리학회지, 45(1), 95-118.
- 박형동.현창욱.오승찬, 2011, 에너지자원 원격탐사, 씨아이알.
- 정관용, 2011, "산지토양특성의 공간적 분포와 예측가능성," 지리학논총, 57, 21-42.
- 정관용.박수진, 2015, "지형분류를 이용한 산지 토양 예측가능성," 한국지형학회지, 22(3), 43-61.
- 정진현.구교상.이충화.김춘식, 2002, "우리나라 산림 토양의 지역별 이화학적 특성," 한국임학회지, 91(6), 694-700.
- 최은영.홍석영.김이현.송관철.장용선, 2009, "가시.근적외 분광 스펙트럼을 이용한 토양 이화학성 추정," 한국토양비료학회지, 42(6), 522-528.
- 최은영.홍석영.김이현.장용선, 2010, "분광학을 이용한 토양 유기물 추정 및 분포도 작성," 한국토양비료학회지, 43(6), 968-974.
- Adamchuk, V. I. and Rossel, R. A. V., 2010, Development of On-the-Go Proximal Soil Sensor Systems, In R. A. V. Rossel, A. B. McBratney and B. Minasny (eds.), Proximal Soil Sensing, Springer, Dordrecht, 15-28.
- Akansu, A. N. and Haddad, R. A., 2001. Multiresolution Signal Decomposition: Transforms, Subbands, and Wavelets, Academic Press, San Diego.
- Breiman, L., 2001, Random forests. Machine learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
- Chang, C. W., Laird, D. A., Mausbach, M. J. and Hurburgh, C. R., 2001, Near-Infrared Reflectance Spectroscopy-Principal Components Regression Analyses of Soil Properties, Soil Science Society of America Journal, 65(2), 480-490. https://doi.org/10.2136/sssaj2001.652480x
- Chang, C. W. and Laird, D. A., 2002, Near-infrared reflectance spectroscopic analysis of soil C and N, Soil Science, 167(2), 110-116. https://doi.org/10.1097/00010694-200202000-00003
- Choe, E., van de Meer, F., van Ruitenbeek, F., van der Werff, H., de Smeth, B. and Kim, K., 2008, Mapping of heavy metal pollution in stream sediments using combined geochemistry, field spectroscopy, and hyperspectral remote sensing: A case study of the Rodalquilar mining area, SE Spain, Remote Sensing of Environment, 112, 3222-3233. https://doi.org/10.1016/j.rse.2008.03.017
- Chun, H. C., Hong, S. Y., Song, K. C. and Kim, Y., 2012, Predicting Organic Matter content in Korean Soils Using Regression rules on Visible-Near Infrared Diffuse Reflectance Spectra, Korean Journal of Soil Science and Fertilizer, 45(4), 497-502. https://doi.org/10.7745/KJSSF.2012.45.4.497
- Clark, R. N. and Roush, T. L., 1984, Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications, Journal of Geophysical Research: Solid Earth, 89(B7), 6329-6340. https://doi.org/10.1029/JB089iB07p06329
- Dayal, B. S. and MacGregor, J. F., 1997, Improved PLS Algorithms. Journal of Chemometrics, 11, 73-85. https://doi.org/10.1002/(SICI)1099-128X(199701)11:1<73::AID-CEM435>3.0.CO;2-#
- Dematte, J. A. M. and da Silva Terra, F., 2014, Spectral pedology: A new perspective on evaluation of soils along pedogenetic alterations, Geoderma, 217-218, 190-200. https://doi.org/10.1016/j.geoderma.2013.11.012
- Donoho, D. L. and Johnstone, I. M., 1994, Ideal spatial adapatation by wavelet shrinkage, Biometrika, 81(3), 425-455. https://doi.org/10.1093/biomet/81.3.425
- Hartemink, A. E. and Minasny, B., 2016, Digital soil morphometrics, Springer International Publishing, Switzerland.
- Hong, S. Y., Lee, K., Minasny, B., Kim, Y. and Hyun, B. K., 2014, Predicting Soil Chemical Properties with Regression Rules from Visible-near Infrared Reflectance Spectroscopy, Korean Journal of Soil Science and Fertilizer, 47(5), 319-323. https://doi.org/10.7745/KJSSF.2014.47.5.319
- Jensen, J. R., 2006, Remote sensing of the environment: An earth resource perspective, Pearson education.
- Lal, R., 2004, Soil Carbon Sequestration Impacts on Global Climate Change and Food Security, Science, 304(5677), 1623-1627. https://doi.org/10.1126/science.1097396
- McBratney, A. B., Mendonca Santos, M. L. and Minasny, B., 2003, On digital soil mapping, Geoderma, 117, 3-52. https://doi.org/10.1016/S0016-7061(03)00223-4
- McKay, M. D., Beckman, R. J. and Conover, W. J., 1979, A compa rison of three method s for selec ting values of input variables in the analysis of output from a computer code, Technometrics, 21(2), 239-245. https://doi.org/10.1080/00401706.1979.10489755
- Minasny, B. and McBratney, A. B., 2006, A conditioned Latin hypercube method for sampling in the presence of ancillary information, Computers & Geosciences, 32(9), 1378-1388. https://doi.org/10.1016/j.cageo.2005.12.009
- Minasny, B. and McBratney, A. B., 2008, Regression rules as a tool for predicting soil properties from infrared reflectance spectroscopy, Chemometrics and Intelligent Laboratory Systems, 94(1), 72-79. https://doi.org/10.1016/j.chemolab.2008.06.003
- Nason, G., 2008, Wavelet methods in statistics with R, Springer Science & Business Media, New York.
- Park, S. J., Ruecker, G. R., Agyare, W. A., Akramhanov, A., Kim, D. and Vlek, P. L. G., 2009, Influence of Grid Cell Size and Flow Routing Algorithm on Soil-Landform Modeling, Journal of the Korean Geographical Society, 44(2), 122-145.
- Quinlan, J. R., 1992, C4. 5: Programming for machine learning, Morgan Kauffmann, California.
- Ramirez-Lopez, L. and Stevens, A., 2014, Pre-processing, sampling and modelling (soil) vis-IR data using the 'prospectr' and 'resemble' packages, Pedometron, 34, 9-14.
- Rossel, R. A. V., Walvoort, D. J. J., McBratney, A. B., Janik, L. J. and Skjemstad, J. O., 2006, Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties, Geoderma, 131(1-2), 59-75. https://doi.org/10.1016/j.geoderma.2005.03.007
- Rossel, R. A. V. and Lark, R. M., 2009, Improved analysis and modelling of soil diffuse reflectance spectra using wavelets, European Journal of Soil Science, 60(3), 453-464. https://doi.org/10.1111/j.1365-2389.2009.01121.x
- Rossel, R. A. V. and Behrens, T., 2010, Using data mining to model and interpret soil diffuse reflectance spectra, Geoderma, 158(1-2), 46-54. https://doi.org/10.1016/j.geoderma.2009.12.025
- Rossel, R. A. V., Rizzo, R., Demattê, J. A. M. and Behrens, T., 2010a, Spatial Modeling of a Soil Fertility Index using Visible-Near-Infrared Spectra and Terrain Attributes, Soil Science Society of America Journal, 74(4), 1293-1300. https://doi.org/10.2136/sssaj2009.0130
- Rossel, R. A. V., McBratney, A. B. and Minasny, B., 2010b, Proximal soil sensing, Springer Science & Business Media, Dordrecht.
- Savitzky, A. and Golay, M. J. E., 1964, Smoothing and Differentiation of Data by Simplified Least Squares Procedures, Analytical Chemistry, 36(8), 1627-1639. https://doi.org/10.1021/ac60214a047
- Schoenholtz, S. H., Van Miegroet, H. and Burger, J. A., 2000, A review of chemical and physical properties as indicators of forest soil quality: Challenges and opportunities, Forest Ecology and Management, 138(1-3), 335-356. https://doi.org/10.1016/S0378-1127(00)00423-0
- Scull, P., Franklin, J., Chadwick, and O. A., McArthur, D., 2003, Predictive soil mapping: a review, Progress in Physical Geography, 27(2), 171-197. https://doi.org/10.1191/0309133303pp366ra
- Shukla, M. K., 2011, Soil hydrology, land use and agriculture: measurement and modelling, CABI, Oxfordshire.
- Soriano-Disla, J. M., Janik, L. J., Rossel, R. A. V., Macdonald, L. M. and McLaughlin, M. J., The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical and biological properties, Applied Spectroscopy Reviews, 49(2), 139-186. https://doi.org/10.1080/05704928.2013.811081
- Stenberg, B., Rossel, R. A. V., Mouazen, A. M. and Wetterlind, J., 2010, Visible and Near Infrared Spectroscopy in Soil Science, Advances in agronomy, 107, 163-215.
- Stenberg, B. and Rossel, R. A. V., 2010, Diffuse reflectance spectroscopy for high-resolution soil sensing, In R. A. V. Rossel, A. B. McBratney and B. Minasny (eds.), Proximal Soil Sensing, Springer, Dordrecht, 29-47.
- Stevens, A., Nocita, M., Toth, G., Montanarella, L. and van Wesemael, B., 2013, Prediction of Soil Organic Carbon at the European Scale by Visible and Near InfraRed Reflectance Spectroscopy, PLoS ONE, 8(6).
- Sweeney, K. E., Roering, J. J., Almond, P. and Reckling, T., 2012, How steady are steady-state landscapes? Using visible-near-infrared soil spectroscopy to quantify erosional variability, Geology, 40, 807-810. https://doi.org/10.1130/G33167.1
- Vapnik, V., 1995, The Nature of Statistical Learning Theory, Springer Verlag, New York.
- Vitousek, P. M., Hattenschwiler, S., Olander, L. and Allison, S., 2002, Nitrogen and Nature, Ambio: A Journal of the Human Environment, 31(2), 97-101. https://doi.org/10.1579/0044-7447-31.2.97
- Wold, S., Ruhe, A., Wold, H. and Dunn III, W. J., 1984, The collinearity problem in linear regression, the partial least squares (PLS) approach to generalized inverses, SIAM Journal on Scientific and Statistical Computing, 5(3), 735-743. https://doi.org/10.1137/0905052