References
- Armstrong, P. R., M. L. Stone and G. H. Brusewitz. 1997. Nondestructive acoustic and compression measurements of watermelon for internal damage detection. Applied Engineering in Agriculture 13(5):641-645. https://doi.org/10.13031/2013.21638
- Bobelyn, E., A. S. Serban, M. Nicu, J. Lammertyn, B. M. Nicolai and W. Saeys. 2010. Postharvest quality of apple predicted by NIR-spectroscopy: study of the effect of biological variability on spectra and model performance. Postharvest Biology and Technology 55(3): 133-143. https://doi.org/10.1016/j.postharvbio.2009.09.006
- Diener, R. G., J. P. Mitchell and M. L. Rhoten. 1970. Using an X-ray image scan to sort bruised apples. Agricultural Engineering 51(6):356-361.
- Diezma-Iglesias, B., M. Ruiz-Altisent and P. Barreiro, 2004. Detection of internal quality in seedless watermelon by acoustic impulse response. Biosystems Engineering 88(2):221-230. https://doi.org/10.1016/j.biosystemseng.2004.03.007
- Fan, G. Q., J. W. Zha, R. Du and L. Gao. 2009. Determination of soluble solids and firmness of apples by Vis/NIR transmittance. Journal of Food Engineering 93(4):416- 420. https://doi.org/10.1016/j.jfoodeng.2009.02.006
- Guthrie, J., B. Wedding and K. Walsh. 1998. Robustness of NIR calibrations for soluble solids in intact melon and pineapple. Journal of Near Infrared Spectroscopy 6: 259-265. https://doi.org/10.1255/jnirs.145
- Jamal, N., Y. Ying, J. Wang and X, Rao. 2005. Finite element models of watermelon and their applications. Transactions of the CSAE 21(1):17-22.
- Lammertyn, J., T. Dresselaers, P. H. Van, P. Jancsòk, M. Wevers and B. M. Nicolai. 2003. MRI and X-ray CT study of spatial distribution of core breakdown in 'Conference' pears. Magnetic Resonance Imaging 21: 805-815. https://doi.org/10.1016/S0730-725X(03)00105-X
- Lee, K. H., N. Zhang, W. B. Kuhn and G. J. Kluitenberg. 2007. A frequency-response permittivity sensor for simultaneous measurement of multiple soil properties: part 1. the frequency-response method. Transactions of the ASABE 50(6):2315-2326. https://doi.org/10.13031/2013.24084
- Liu, Y., X. Sun and A. Ouyang. 2010. Nondestructive measurement of soluble solid content of navel orange fruit by visible-NIR spectrometric technique with PLSR and PCA-BPNN. LWT-Food Science and Technology 43: 602-607. https://doi.org/10.1016/j.lwt.2009.10.008
- Liu, Y. D., X. M. Chen and A. G. Ouyang. 2008. Nondestructive determination of pear internal quality indices by visible and near-infrared spectrometry. LWT - Food Science and Technology 41(9):1720-1725. https://doi.org/10.1016/j.lwt.2007.10.017
- Lu, R. 2004. Multispectral imaging for predicting firmness and soluble solids content of apple fruit. Postharvest Biology and Technology 31:147-157. https://doi.org/10.1016/j.postharvbio.2003.08.006
- McGlone, V. A., C. J. Clark and R. B. Jordan. 2007. Comparing density and VNIR methods for predicting quality parameters of yellow-fleshed kiwifruit (Actinidia chinensis). Postharvest Biology and Technology 46 (1):1-9. https://doi.org/10.1016/j.postharvbio.2007.04.003
- Nelson, S. O., S. Trabelsi and S. J. Kays. 2006. Dielectric spectroscopy of honeydew melons from 10 MHz to 1.8 GHz for quality sensing. Transactions of the ASABE 49(6):1977-1981. https://doi.org/10.13031/2013.22278
- Nelson, S. O., W. Guo, S. Trabelsi and S. J. Kays. 2007. Dielectric spectroscopy of watermelons for quality sensing. Measurement Science and Technology 18: 1887-1892. https://doi.org/10.1088/0957-0233/18/7/014
- Nelson, S. O., S. Trabelsi and S. J. Kays. 2008. Dielectric spectroscopy of melons for potential quality sensing. Transactions of the ASABE 51(6):2209-2214. https://doi.org/10.13031/2013.25384
- Nicolai, B. M., K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K. I. Theron and J. Lammertyn. 2007. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review. Postharvest Biology and Technology 46:99-118. https://doi.org/10.1016/j.postharvbio.2007.06.024
- Ozer, N., B. A. Engel and J. E. Simon. 1998. A multiple impact approach for nondestructive measurement of fruit firmness and maturity. Transactions of the ASAE 41(3):871-876. https://doi.org/10.13031/2013.17204
- Penchaiya, P., E. Bobelyn, B. E. Verlinden, B. M. Nicolai and W. Saeys. 2009. Non-destructive measurement of firmness and soluble solids content in bell pepper using NIR spectroscopy. Journal of Food Engineering 94: 267-273. https://doi.org/10.1016/j.jfoodeng.2009.03.018
- Saeys, W., K. Beullens, J. Lammertyn, H. Ramon and T. Naes. 2008. Increasingrobustness against changes in the interferent structure by incorporating priorinformation in the augmented classical least-squares framework. Anal. Chem. 80(13):4951-4959. https://doi.org/10.1021/ac800155n
- Stone, M. L., P. R. Armstrong, X. Zhang, G. H. Brusewitz and D. D. Chen. 1996. Watermelon maturity determination in the field using acoustic impulse impedance techniques. Transactions of the ASAE 39(6):2325-2330. https://doi.org/10.13031/2013.27743
- Sugiyama, J., T. Katsural, J. Hong, H. Koyama and K. Mikuriya. 1998. Melon ripeness monitoring by a portable firmness tester. Transactions of the ASAE 41(1):121-127. https://doi.org/10.13031/2013.17135
- Suh, S. R., K. H. Lee, S. H. Yu, S. N. Yoo and Y. S. Choi. 2011. Comparison of performance of measuring of VIS/NIR spectroscopic spectrum to predict soluble solids content and 'Shingo' pear. Journal of Biosystems Engineering 36(2):130-139. https://doi.org/10.5307/JBE.2011.36.2.130
- Suh, S. R., K. H. Lee, S. H. Yu, H. S. Shin, S. N. Yoo and Y. S. Choi. 2012. A melon fruit grading machine using a miniature VIS/NIR spectrometer: 2. Design factors for optimal interactance measurement setuo. Journal of Biosystems Engineering 37(3):177-183. https://doi.org/10.5307/JBE.2012.37.3.177
- Sun, T., K. Huang, H. Xu and Y. Ying. 2010. Research advances in nondestructive determination of internal quality in watermelon/melon: A review. Journal of Food Engineering 100:569-577. https://doi.org/10.1016/j.jfoodeng.2010.05.019
- Tollner, E. W., R. D. Gitaitis, K. W. Seebold and B. W. Maw. 2005. Experiences with a food product X-ray inspection system for classifying onions. Applied Engineering in Agriculture 21(5):907-912. https://doi.org/10.13031/2013.19695
- Wang, S., Q. Jiao and J. Ji. 1999. An impulse response method of nondestructive inspection of the ripeness of watermelon. Transactions of the CSAE 15(3):241- 245.
Cited by
- Comparison of optical reflectance spectrum at blade and vein parts of cabbage and kale leaves vol.40, pp.2, 2013, https://doi.org/10.7744/cnujas.2013.40.2.163
- Location of Sampling Points in Optical Reflectance Measurements of Chinese Cabbage and Kale Leaves vol.40, pp.2, 2015, https://doi.org/10.5307/JBE.2015.40.2.115
- Location and Number of Sampling for Optical Reflectance Measurement of Chinese Cabbage and Kale Leaves vol.46, pp.18, 2013, https://doi.org/10.3182/20130828-2-SF-3019.00036
- Determination of the sample number for optical reflectance measurement of vegetable leaf vol.112, 2015, https://doi.org/10.1016/j.compag.2015.01.004
- A Melon Fruit Grading Machine Using a Miniature VIS/NIR Spectrometer: 2. Design Factors for Optimal Interactance Measurement Setup vol.37, pp.3, 2012, https://doi.org/10.5307/JBE.2012.37.3.177