• Title/Summary/Keyword: spectral amplitude

Search Result 274, Processing Time 0.026 seconds

Speech Signal Processing using Adaptative Filter (적응필터를 이용한 음성신호처리)

  • Kim, Soo-Yong;Jee, Suk-Kun;Park, Dong-Jin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.743-749
    • /
    • 2007
  • Today, we can use radio communication device anywhere-anytime. Sometimes, we use the device in acoustic noise environment. The acoustic noise makes many problems in communication system. In acoustic noise environment, speaker cannot send clear information to receiver, because the received signal includes both speech signal and noise signal. A digital filter is useful to remove noise to get desired signal. One of methods is the adaptive digital filter using the adaptive noise canceller that automatically adjust filter parameters. This thesis addresses articulation algorithms against actual acoustic noises by means of two adaptive filtering methods. One is the adaptive noise canceller with two input channels and another is the spectral subtraction filter with one input channel. The experimental result from the proposed filter shows that the adaptive noise canceller is useful to reduce the non-stationary noises, while the spectral amplitude filter is effective for stationary noises.

  • PDF

Comparison of Backgroud Noise Characteristics between Surface and Borehole Station of Hwacheon (화천 지진관측소 지표와 시추공의 배경잡음 특성 비교)

  • Yun, Won Young;Park, Sun-Cheon;Kim, Ki Young
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.4
    • /
    • pp.203-210
    • /
    • 2013
  • To look into site characteristics of the Hwacheon borehole seismic station, we analyzed property of earthquake and microtremor recorded on surface and borehole seismometers. Acoording to analysis result of microtremor, the surface-to-borehole energy ratio was approximately 15 times greater during the daytime than during the nighttime, and the surface-to-borehole ratios of spectral amplitudes as frequency increases. For earthquake data, amplitude spectra and dominant frequency were computed using surface and borehole data. As a result, small earthquakes with short distance recorded on surface seismometer peaked at 8 Hz, 46 Hz. This result corresponds to resonance frequencies (7.4 Hz, 46 Hz) calculated by H/V spectral ratio. We confirmed amplification effect by site characteristics of overburden. Background noise level was approximately 20,000 times smaller at borehole seismic station than surface seismic station. These results provide strong evidence for the superior recording of earthquakes using borehole seismometers instead of surface seismometers.

The Acceleration Response Spectrum for Simulated Strong Motions Considering the Earthquake Characteristics of the Korean Peninsula (한반도 지진특성을 고려하여 모사된 강진동에 대한 가속도 응답스펙트럼)

  • Kim, Sung-Kyun
    • Journal of the Korean earth science society
    • /
    • v.28 no.2
    • /
    • pp.179-186
    • /
    • 2007
  • The response spectrum is one of the important basic materials for the aseismic design. Numerous strong ground motions based on the seismic source characteristics for the earthquakes occurring in the Korean Peninsula were simulated to obtain the response spectra by using the computer program, SMSIM, developed by Boore (2005). Through the extensive review of other study outcomes, the input data for the simulation such as seismic source and attenuation characteristics were selected. The spectra obtained from the simulated ground motions were normalized to 1.0 g of zero period acceleration and compared with the standard response spectrum proposed by the U.S. Atomic Energy Commission (AEC, 1973). In this study, we found that the spectral values for the response spectra appeared to be larger than those of the standard spectrum in the frequency band above roughly 10 Hz. The variation of resulting response spectra was evaluated with the variable stress drops. It was shown that the spectral amplitude of the spectrum for the larger stress drop denotes higher value in the low frequency range.

Directive Spectrum Analyzing System Using a Linear Hydrophone Array (직선배열 hydrophone에 의한 수중음원의 분석)

  • CHANG Jee-Won;JEONG Jung-Hyun;SUR Doo-Og
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.14 no.4
    • /
    • pp.265-268
    • /
    • 1981
  • The direction and spectra of underwater sound wave were a remarkable contrast to the sound wave in the air because of the difference of transmissive medium. The linear hydrophone array of passive system has so far been applied to find out the direction and spectra of underwater sound wave from the sources for many purposes. The conventional methods are generally classified into two systems such as, the system which varying frequency responses, other parameters and pattern of signal like an adaptive array controlled by internal feedback, and another system which obtaining maximum of S/N ratio by giving a appropriate delay and a weighting coefficient in the output of each hydrophone. The array device of passive system can easily change the amplitude and the phase of signal by separately controlled hydrophone. And here we introduce a method that the spectral analyzing and the direction finding can be simultaneously carried out using a linear array of hydrophones. By making a circular convolution of output of signal from each hydrophone with appropriate rectangular weighting coefficient on the array, a sharp response of single lobe directivity and the spectral analyzing by time averaging were simultaneously obtained. In tile computer simulation of the array system with the length of 250cm and the interhydrophone distance of l0cm the power levels of sound signals received from given array direction were 16dB higher than those from the other directions when processing with rectangular weightings, and 8dB higher when processing with rectangular sound signals and rectangular weightings.

  • PDF

Measurement of the Phase Errors of AWG by Using the Monte-Carlo Analysis (몬테카를로 분석 방법을 이용한 AWG의 위상 오차 측정)

  • Go, Chun-Soo;Oh, Yong-Ho;Lim, Sung-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.5
    • /
    • pp.207-213
    • /
    • 2011
  • We propose a new method to measure the phase errors of an AWG(arrayed waveguide grating) through Monte-Carlo analysis. In the frequency domain method, we used the Monte-Carlo method to fit the theory to the experimental results. The phase and amplitude values are obtained from the fitted theory. To verify our method, we carried out a simulation. Some phase errors were included to make a virtual interferogram and we measured the actual AWG phase errors from it by our method. The results show that our method gives good results if the laser tuning range is larger than 1.7 times of the AWG FSR(free spectral range) and if the phase errors are within ${\pm}50^{\circ}$.

A study on adaptive noise cancellation for enhancement of digital speech articulation (디지털음성명료도 향상을 위한 적응형 잡음제거 기법에 관한 연구)

  • Kim, Soo-Yong;Jee, Suk-Kun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.961-968
    • /
    • 2007
  • Today, we can use radio communication device anywhere-anytime. Sometimes, we use the device in acoustic noise environment. The acoustic noise makes many problems in communication system. In acoustic noise environment, speaker cannot send clear information to receiver, because the received signal includes both speech signal and noise signal. A digital filter is useful to remove noise to get desired signal. One of methods is the adaptive digital filter using the adaptive noise canceller that automatically adjust filter parameters. This thesis addresses articulation algorithms against actual acoustic noises by means of two adaptive filtering methods. One is the adaptive noise canceller with two input channels and another is the spectral subtraction filter with one input channel. The experimental result from the proposed filter shows that the adaptive noise canceller is useful to reduce the non-stationary noises, while the spectral amplitude filter is effective for stationary noises.

Generation of Design Time History Complying With Japanese Seismic Design Standards for Nuclear Power Plants (일본 원전 내진설계 기술기준을 적용한 모의지진파(가속 도시간이력) 작성)

  • Gin, Seungmin;Kim, Yongbog;Lee, Yongsun;Moon, Il Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.83-91
    • /
    • 2021
  • Seismic designs for Korean nuclear power plants (NPPs) under earthquakes' design basis are noticed due to the recent earthquake events in Korea and Japan. Japan has developed the technologies and experiences of the NPPs through theoretical research and experimental verification with extensively accumulated measurement data. This paper describes the main features of the design-time history complying with the Japanese seismic design standard. Proper seed motions in the earthquake catalog are used to generate one set of design time histories. A magnitude and epicentral distance specify the amplitude envelope function configuring the shape of the earthquake. Cumulative velocity response spectral values of the design time histories are compared and checked to the target response spectra. Spectral accelerations of the time histories and the multiple-damping target response spectra are also checked to exceed. The generated design time histories are input to the reactor building seismic analyses with fixed-base boundary conditions to calculate the seismic responses. Another set of design time histories is generated to comply with Korean seismic design procedures for NPPs and used for seismic input motions to the same reactor containment building seismic analyses. The responses at the dome apex of the building are compared and analyzed. The generated design time histories will be also applied to subsequent seismic analyses of other Korean standard NPP structures.

Grand Circulation Process of Beach Cusp and its Seasonal Variation at the Mang-Bang Beach from the Perspective of Trapped Mode Edge Waves as the Driving Mechanism of Beach Cusp Formation (맹방해안에서 관측되는 Beach Cusp의 일 년에 걸친 대순환 과정과 계절별 특성 - 여러 생성기작 중 포획모드 Edge Waves를 중심으로)

  • Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.5
    • /
    • pp.265-277
    • /
    • 2019
  • Using the measured data of waves and shore-line, we reviewed the grand circulation process and seasonal variation of beach cusp at the Mang-Bang beach from the perspective of trapped mode Edge waves known as the driving mechanism of beach cusp. In order to track the temporal and spatial variation trends of beach cusp, we quantify the beach cusp in terms of its wave length and amplitude detected by threshold crossing method. In doing so, we also utilize the spectral analysis method and its associated spectral mean sand wave number. From repeated period of convergence and ensuing splitting of sand waves detected from the yearly time series of spectral mean sand wave number of beach cusp, it is shown that the grand circulation process of beach cusp at Mang-Bang beach are occurring twice from 2017. 4. 26 to 2018. 4. 20. For the case of beach area, it increased by $14,142m^2$ during this period, and the shore-line advanced by 18 m at the northen and southern parts of the Mang-Bang beach whereas the shore-line advanced by 2.4 m at the central parts of Mang-Bang beach. It is also worthy of note that the beach area rapidly increased by $30,345m^2$ from 2017.11.26. to 2017.12.22. which can be attributed to the nature of coming waves. During this period, mild swells of long period were prevailing, and their angle of attack were next to zero. These characteristics of waves imply that the main transport mode of sediment would be the cross-shore. Considering the facts that self-healing capacity of natural beaches is realized via the cross-shore sediment once temporarily eroded. it can be easily deduced that the sediment carried by the boundary layer streaming toward the shore under mild swells which normally incident toward the Mang-Bang beach makes the beach area rapidly increase from 2017.11.26. to 2017.12.22.

In-situ Monitoring of GaN Epilayers by Spectral Reflectance (분광 반사법을 이용한 GaN 박막의 실시간 관찰)

  • Na, Hyun-Seok
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.5
    • /
    • pp.361-366
    • /
    • 2011
  • An in-situ, real-time monitoring of GaN epilayers grown by low pressure metalorganic chemical vapor deposition system modified for spectral reflectance was performed. Reflectance spectrums from 190~861 nm were observed using p-polarized light with incident angle of $75^{\circ}$. All reflectance spectrums showed interference oscillation caused by multiple reflection within GaN epilayers, and the spectrum from GaN with low crystalline quality showed weak reflectance intensity and much low amplitude of the oscillation because many defects in GaN resulted in light scattering and absorption. Signal variation of reflected light which was selected around strong constructive wavelength range was also observed during $NH_3$ supplying and $NH_3$ cut-off. There was no significant change in signal intensity when $NH_3$ cut-off for 10 sec, but it showed higher intensity when $NH_3$ was cut off for over 30 sec and its intensity kept unchanged. This result indicates that GaN surface was N-terminated during $NH_3$ supplying but Ga-terminated during $NH_3$ cut-off because of high nitrogen equilibrium vapor pressure of GaN, and metallic Ga-terminated surface caused slightly higher reflectance intensity.

Cavitation Suppression Effects by the Modification of the Spectral Characteristics of High Intensity Focused Ultrasound (고강도 집속형 초음파의 주파수 성분 특성에 따른 공동 현상 억제 효과)

  • 최민주
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.68-77
    • /
    • 1999
  • The paper looked into the effects of the spectral properties (waveform) of the high intensity focused ultrasound on suppression of the ultrasonic cavitation. Three different types of ultrasound were considered in the study, which were sinusoidal (1 MHz, 5 MPa), frequency modulated (from 1 MHz to 6 MHz for 10 ㎲, 5 MPa), asymmetrically shocked (fundamental frequency 1 MHz, peak positive pressure 12 MPa, peak negative pressure -4 MPa). The temporal response of an air bubble in water initially 1 ㎛ in radius to each type of the ultrasound was predicted using Gilmore bubble dynamic model and Church's rectified gas diffusion equation. It was shown that the radially pulsating amplitude of the bubble was greatly reduced for the frequency modulated wave and was little decreased for the shock wave, compared to the case that the bubble was exposed to the sinusoidal wave. It is interesting that the bubble response to the frequency modulated wave remains similar when the frequency component of the modulated ultrasound is beyond the bubble resonant frequency 3 MHz. This implies that, although the ultrasound is modulated up to 3MHz rather than up to the present 6 MHz, it is likely to produce similar cavitation suppression effects. In practice, it means that a typical narrow band ultrasonic transducer can be taken to generate an appropriate frequency modulated ultrasound to reduce cavitation activity. The present study indicates that ultrasonic cavitation may be suppressed to some extent by a proper spectral modification of high intensity ultrasound.

  • PDF