Browse > Article
http://dx.doi.org/10.5757/JKVS.2011.20.5.361

In-situ Monitoring of GaN Epilayers by Spectral Reflectance  

Na, Hyun-Seok (Department of Advanced Materials Science and Engineering, Daejin University)
Publication Information
Journal of the Korean Vacuum Society / v.20, no.5, 2011 , pp. 361-366 More about this Journal
Abstract
An in-situ, real-time monitoring of GaN epilayers grown by low pressure metalorganic chemical vapor deposition system modified for spectral reflectance was performed. Reflectance spectrums from 190~861 nm were observed using p-polarized light with incident angle of $75^{\circ}$. All reflectance spectrums showed interference oscillation caused by multiple reflection within GaN epilayers, and the spectrum from GaN with low crystalline quality showed weak reflectance intensity and much low amplitude of the oscillation because many defects in GaN resulted in light scattering and absorption. Signal variation of reflected light which was selected around strong constructive wavelength range was also observed during $NH_3$ supplying and $NH_3$ cut-off. There was no significant change in signal intensity when $NH_3$ cut-off for 10 sec, but it showed higher intensity when $NH_3$ was cut off for over 30 sec and its intensity kept unchanged. This result indicates that GaN surface was N-terminated during $NH_3$ supplying but Ga-terminated during $NH_3$ cut-off because of high nitrogen equilibrium vapor pressure of GaN, and metallic Ga-terminated surface caused slightly higher reflectance intensity.
Keywords
GaN; Metalorganic chemical vapor deposition; Spectral reflectance;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 M. Y. Cho, M. S. Kim, and J. Y. Leem, J. Korean Vacuum Soc. 19, 371 (2010).   DOI
2 H. Na, H. J. Kim, S. Y. Kwon, and E. Yoon, J. Korean Phys. Soc. 37, 971 (2000).   DOI
3 K. P. Killeen and W. G. Breiland, J. Electron. Mater. 23, 179 (1994).   DOI
4 H. Sankur, W. Southwell, and R. Hall, J. Electron. Mater. 20, 1099 (1991).   DOI
5 L. Condidine, E. J. Thrush, J. A. Crawley, K. Jacobs, W. Van der Stricht, I. Moerman, P. Demeester, G. H. Park, S. J. Hwang, and J. J. Song, J. Cryst. Growth 195, 192 (1998).   DOI
6 S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994).   DOI
7 S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, Jpn. J. Appl. Phys. 34, L797 (1995).   DOI
8 T. Y. Nam, D. H Kim, W. H. Lee, S. J. Kim, B. G. Lee, T. G. Kim, Y. C. Jo, and Y. S. Choi, J. Korean Vacuum Soc. 19, 10 (2010).   DOI
9 Y. Kobayashi, T. Akasaka, and N. Kobayashi, J. Cryst. Growth 195, 187 (1998).   DOI
10 Y. Taniyasu, R. Ito, N. Shimoyama, M. Kurihara, A. Jia, Y. Kato, M. Kobayashi, A. Yoshikawa, and K. Takahashi, J. Cryst. Growth 189-190, 305 (1998).   DOI
11 T. J. Kim, Y. D. Kim, and Y. D. Park, J. Korean Vac. Sci & Tech. 5, 52 (2001).
12 Y. Kumagai, A. Tsuyuguchi, H. Naoi, T. Araki, H. Na, and Y. Nanishi, Phys. Stat. Sol. (b) 243, 1468 (2006).   DOI