DOI QR코드

DOI QR Code

Measurement of the Phase Errors of AWG by Using the Monte-Carlo Analysis

몬테카를로 분석 방법을 이용한 AWG의 위상 오차 측정

  • Go, Chun-Soo (Division of Semiconductor and Microelectronics Technology, Wonkwang University) ;
  • Oh, Yong-Ho (Division of Semiconductor and Microelectronics Technology, Wonkwang University) ;
  • Lim, Sung-Woo (Division of Semiconductor and Microelectronics Technology, Wonkwang University)
  • 고춘수 (원광대학교 반도체.디스플레이학부) ;
  • 오용호 (원광대학교 반도체.디스플레이학부) ;
  • 임성우 (원광대학교 반도체.디스플레이학부)
  • Received : 2011.09.16
  • Accepted : 2011.10.17
  • Published : 2011.10.25

Abstract

We propose a new method to measure the phase errors of an AWG(arrayed waveguide grating) through Monte-Carlo analysis. In the frequency domain method, we used the Monte-Carlo method to fit the theory to the experimental results. The phase and amplitude values are obtained from the fitted theory. To verify our method, we carried out a simulation. Some phase errors were included to make a virtual interferogram and we measured the actual AWG phase errors from it by our method. The results show that our method gives good results if the laser tuning range is larger than 1.7 times of the AWG FSR(free spectral range) and if the phase errors are within ${\pm}50^{\circ}$.

몬테카를로 방법을 기반으로 한 수치해석을 이용하여 AWG(arrayed waveguide grating)의 위상 오차를 측정하는 방법을 제안한다. 진동수 영역 측정법에서 실험치와 가장 근접한 이론치를 구하기 위해 몬테카를로 방법을 사용하며 최적화된 이론치로부터 AWG 각 도파로의 진폭과 위상값들을 결정한다. 이 방법의 타당성을 검증하기 위해 모의실험을 수행하였다. AWG의 각 도파로에 임의로 위상 오차를 설정하여 가상의 실험치를 만들고 우리의 방법을 통해 거꾸로 위상 오차를 알아냈다. 모의실험 결과 간섭계 광원의 진동수 변조 범위가 AWG FSR(free spectral range)의 1.7 배보다 클 때, 그리고 위상 오차가 ${\pm}50^{\circ}$ 이내일 때 매우 정확하게 위상 및 진폭을 측정할 수 있음을 확인하였다.

Keywords

References

  1. M. K. Smit and C. van Dam, "Phasar-based WDM-devices: principles, design and applications," IEEE J. Select. Topics Quantum Electron. 2, 236-250 (1996). https://doi.org/10.1109/2944.577370
  2. E. C. Sim, F. M. Abbou, and A. R. Faidz, "System degradation due to phase error induced crosstalk in WDM optical networks employing arrayed waveguide grating multi/demultiplexer," Opt. Quantum Electron. 39, 553-560 (2007). https://doi.org/10.1007/s11082-007-9105-5
  3. K. Takada, Y. takada, A. Yokoda, and S. Satoh, "Metal mask fabrication with an inkjet printer for AWG phase trimming using a photosensitive refractive index change," IEEE Photon. Technol. Lett. 17, 813-815 (2005). https://doi.org/10.1109/LPT.2004.842788
  4. W. Jiang, N. K. Fontaine, F. M. Soares, J. H. Baek, K. Okamoto, and S. J. B. Yoo, "Dynamic phase error compensation for high-resolution InP arrayed-waveguide grating using electro-optic effect," in Proc. LEOS 2008 (Sorrento, Italy, Sep. 2008), pp. 53-54.
  5. K. Takada, H. Yamada, and Y. Inoue, "Optical low coherence method for characterizing silica-based arrayed-waveguide gratings multiplexers," J. Lightwave Technol. 14, 1677-1689 (1996). https://doi.org/10.1109/50.507944
  6. Y. K. Song, N. C. Heo, and Y. Chung, "Low coherence interferometer for measurement of path length errors in arrayed-waveguide grating," J. Opt. Soc. Korea 15, 539-546 (2004). https://doi.org/10.3807/KJOP.2004.15.6.539
  7. J. A. Lazaro, R. Wessel, J. Koppenborg, G. Dudziak, and I. J. Blewett, "Inverse Fourier tramsfoem method for characterizing arrayed-waveguide grating," IEEE Photon. Technol. Lett. 15, 93-95 (2003). https://doi.org/10.1109/LPT.2002.805809
  8. K. Takada and K. Okamoto, "Frequency-domain measurement of phase error distribution in narrow-channel arrayed waveguide grating," Electron. Lett. 36, 160-161 (2000).
  9. K. Takada, T. Yokota, and T. Horose, "Increased sampling rate with Holbert transformation for AWG phase error measurement in frequency domain," Electron. Lett. 44, 1484-1485 (2008). https://doi.org/10.1049/el:20081836
  10. J. D. Gaskil, Linear Systems, Fourier Transforms, and Optics (John Wiley & Sons, New York, USA, 1978) p. 181.

Cited by

  1. Alternative Method of AWG Phase Measurement Based on Fitting Interference Intensity vol.16, pp.2, 2012, https://doi.org/10.3807/JOSK.2012.16.2.091