• 제목/요약/키워드: specimen depth

검색결과 543건 처리시간 0.022초

온도조건에 따른 교면방수재의 인장접착강도 보정계수에 관한 실험적 연구 (Correction Coeffecient for Tensile Adhesive Strength of the Bridge Decks Waterproofing Systems with Different Temperature Conditions)

  • 이병덕;윤병성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.794-797
    • /
    • 2004
  • In this study, tensile adhesive strength(TAS) test was carreid out for evaluated the effects of temperature conditions (-20, -10, 0, 5, 10, 20, 30, $40^{\circ}C$) on the tensile adhesive characteristics about 4 type waterproofing membranes which were commercially used in bridge decks. And, failure appeariences of waterproofing systems in each temperature after TAS test were observed the sawing surfaces of waterproofing systems for whether or not damaged of waterproofing membranes. Also, correction coefficient of TAS with temperature were calculated using 4 type waterproofing membrane. It could be shown that the higher TAS and shear adhesive strength, the lower temperature, regardless of the type of waterproofing membrane. Temperature sensibility of TAS was especially remarkable in epoxy membrane. Failure type was occurred the ductile failure in $30^{\circ}C\;and\;40^{\circ}C$. From these results, it was shown that if ambient temperature above $30^{\circ}C$ maintains for a long time, waterproofing membrane will be deformed by softening. Otherwise, waterproofing membrane in temperature below $20^{\circ}C$ shown that occurred the brittle failure. From the results of visual observation of cutting surface for specimen, the thin waterproofing membranes shown indented by hot aggregate of the asphalt mixtures. Therefore, it could be known that the specification of waterproofing membrane thickness is necessary by waterproofing membrane type. As temperature change varied with pavement depth, the interface temperature was more important than ambient temperature in TAS test. Now, TAS test results were limited only in $-10^{\circ}C\;and\;20^{\circ}C$ temperature, but correction coefficient of TAS by ambient temperature could be used as a solution to deal with this problem.

  • PDF

금속 표면결함 검출용 자기유도 마이크로 박막 센서 (Inductive Micro Thin Film Sensor for Metallic Surface Crack Detection)

  • 김기현
    • 비파괴검사학회지
    • /
    • 제28권5호
    • /
    • pp.395-400
    • /
    • 2008
  • 비자성 및 자성 금속 시편의 표면 결함을 검출하기 위하여 교류자기장을 이용하였다. 비파괴 센서 프로브는 자성 박막 요크와 박막형 코일로 구성된 신호 검출부와 시편에 교류자기장을 인가하기 위한 단일 직선을 이용한 여기 코일로 이루어져 있다. 박막형 유도 코일 센서는 스퍼터, 전기도금, 건식 식각과 사진식각 공정을 이용하여 제작되었다. 시편에 교류자기장을 인가하기 위하여 0.7 MHz-1.8 MHz 주파수 영역에서 0.1A-1.0A의 교류전류를 여기코일에 인가하였다. 센서의 특성은 최소 0.5 mm의 깊이와 폭을 가진 인위적인 슬릿 형태 비자성체 Al과 자성체 FeC 결함 시편을 이용하여 측정하였다. 측정된 신호는 높은 감도를 갖고 결함 시편위의 슬릿결함의 위치와 일치함을 알 수 있었다. 또한 박막형 유도 코일 센서를 이용하여 마이크론 크기의 표면 결함을 가진 자성체 FeC의 시편을 비접촉 스캔하여 측정된 유도전압의 변화를 이미지화 하였으며 그 결과를 광학적 이미지와 비교하였다.

비파괴 계장화 압입시험을 이용한 저항 점용접부 물성 평가 (Evaluation of Mechanical Properties by Using Instrumented Indentation Testing for Resistance Spot Welds)

  • 최철영;김준기;홍재근;염종택;박영도
    • 한국분말재료학회지
    • /
    • 제18권1호
    • /
    • pp.64-72
    • /
    • 2011
  • Nondestructive instrumented indentation test is the method to evaluate the mechanical properties by analyzing load - displacement curve when forming indentation on the surface of the specimen within hundreds of micro-indentation depth. Resistance spot welded samples are known to difficult to measure the local mechanical properties due to the combination of microstructural changes with heat input. Particularly, more difficulties arise to evaluate local mechanical properties of resistance spot welds because of having narrow HAZ, as well as dramatic changed in microstructure and hardness properties across the welds. In this study, evaluation of the local mechanical properties of resistance spot welds was carried out using the characterization of Instrumented Indentation testing. Resistance spot welding were performed for 590MPa DP (Dual Phase) steels and 780MPa TRIP (Transformation Induced Plasticity) steels following ISO 18278-2 condition. Mechanical properties of base metal using tensile test and Instrumented Indentation test showed similar results. Also it is possible to measure local mechanical properties of the center of fusion zone, edge of fusion zone, HAZ and base metal regions by using instrumented indentation test. Therefore, measurement of local mechanical properties using instrumented indentation test is efficient, reliable and relatively simple technique to evaluate the tensile strength, yield strength and hardening exponent.

비파괴 밀도시험을 통한 아스팔트 콘크리트의 공극률 추정 연구 (Estimation of Air Voids of Asphalt Concrete Using Non-destructive Density Testing)

  • 나일호;이성진;윤지현;김광우
    • 한국농공학회논문집
    • /
    • 제60권6호
    • /
    • pp.111-119
    • /
    • 2018
  • The air-void is known to be one of the influencing factors for estimating long-term performance of asphalt concrete. Most of all, confirming air void or density of pavement layer is important for quality control of field compaction level of asphalt concrete pavement. In this study, a non-nuclear type non-destructive density gage (NDDG) was used to estimate compacted air-voids of asphalt pavement as a non-destructive test method. Asphalt concrete slab specimens were prepared using 6 types of asphalt mixes in laboratory (lab) for lab NDDG test. Four different base structure materials were used to find out if there were any differences due to the type of base structure materials. The actual air-voids and NDDG air-voids were measured from 6 asphalt concrete slabs. Four sections of field asphalt pavements were tested using the NDDG, and actual air voids were also measured from field cores taken from the site where the NDDG air-void was measured. From lab and field experimental tests, it was found that the air-voids obtained by NDDG were not the same as the actual air-voids measured from the asphalt concrete specimen. However, it was possible to estimate air voids based on the relationship obtained from regression analysis between actual and NDDG air voids. The predicted air-voids based on the NDDG air-voids obtained from 50mm depth were found to be reliable levels with $R^2{\fallingdotseq}0.9$. Therefore, it was concluded that the air-voids obtained from NDDG could be used to estimate actual air-voids in the field asphalt pavement with a relatively high coefficient of determination.

Ti-6Al-4V 합금의 미세조직 및 크리프 특성에 미치는 플라즈마 침탄 처리의 영향 (Improvement of Microstructure and Creep Properties of Ti-6Al-4V alloy by Plasma Carburization)

  • 박용권;위명용;박정웅
    • 열처리공학회지
    • /
    • 제17권2호
    • /
    • pp.94-100
    • /
    • 2004
  • In order to improve the wear resistance of Ti-6Al-4V alloy, plasma carburization treatment was newly carried out without consumption of its good specific strength and fatigue life over the temperature. Effect of the plasma carburization was analyzed and compared with the non-treated alloy by microstructural observation, structure characterization and mechanical test. The plasma treated alloy formed a carburized layer of about $150{\mu}m$ in depth from the surface, where a fine and hard particles of TiC and $V_4C_3$ were homogeneously dispersed through the layer. The steady-static creep behaviors of Ti-6Al-4V alloy, using the constant stress creep tester, were investigated over the temperature range of $510{\sim}550^{\circ}C$(0.42~0.44Tm) and the stress range of 200~275 MPa. Stress exponent(n) was decreased from 9.32 of non-treatment specimen to 8.95 of carburized, however, the activation energy(Q) increased from 238 to 250 kJ/mol with the same condition as indicated above. From the above results, it can be concluded that the static creep deformation for Ti-6Al-4V alloy was controlled by the dislocation climb over the ranges of the experimental conditions.

CO2용접에서 용접 토치의 위치변화와 전압이 용접부에 미치는 영향고찰 (Inspection about Influences on the Weld Parts through the Change of the Position of Welding Torch and the Voltage During CO2 Welding)

  • 김법헌;김원일;이칠순
    • 한국산업융합학회 논문집
    • /
    • 제14권2호
    • /
    • pp.59-65
    • /
    • 2011
  • $CO_2$ Welding which uses $CO_2$ instead of inert gas is most widely used in industrial sites. Welding rod for $CO_2$ Welding is roughly divided into solid wire and flux cored wire. $CO_2$ Welding has higher efficiency than any other welding methods, and also economic and speedy to handle, that's why is used frequently for welding general structures. As most of studies about $CO_2$ Welding are focused on metallurgical changes of successful joints, they developed theories about the change of configuration on weld parts. This study is especially focused on not only the change of configuration on weld parts, but also the change of the penetrating depth through changing the position of welding torch. For inspection, applied AWS A5.20 E70-1 among welding wires and fixed moving angles of torch, but controled the values of voltage and the position of welding. Also Automatic Feed Mechanism is used for exact movement of material, specimen is a piece of steel for general structures. By measuring and analyzing the configuration of sliced section and the values of welding leg length and welding throat after welding, the outcome about the changes turned out.

Al 5052 함금 후판재의 전자빔 용접부 단면 형상과 강도에 관한 연구 (A Study on Electron Beam Weldmetal Cross Section Shapes and Strength of Al 5052 Thick Plate)

  • 김인호;이길영;주정민;박경태;천병선
    • Journal of Welding and Joining
    • /
    • 제27권3호
    • /
    • pp.73-79
    • /
    • 2009
  • This present paper investigated the mechanical properties and the microstructures of each penetration shapes classifying the conduction shape area and the keyhole shape area about electron beam welded 120(T)mm thick plated aluminum 5052 112H. As a result the penetration depth is increased linearly according to the output power, but the aspect ratio is decreased after the regular output power. In the conduction shape area, the Heat affected zone is observed relatively wider than the keyhole shape area. In the material front surface of the welded specimen, the width is decreased but the width in the material rear surface is increased. After the measuring the Micro Vikers Hardness, it showed almost similar hardness range in all parts, and after testing the tensile strength, the ultimate tensile strength is similar to the ultimate tensile strength of the base material in all the specimens, also the fracture point was generated in the base materials of all the samples. In the result of the impact test, impact absorbed energy of the Keyhole shape area is turned up very high, and also shown up the effect about four times of fracture toughness comparing the base material. In the last result of observing the fractographs, typical ductile fraction is shown in each weld metal, and in the basic material, the dimple fraction is shown. The weld metals are shown that there are no other developments of any new chemical compound during the fastness melting and solidification.

서태평양에서 채집된 Pomacanthus xanthometopon 후기자어의 외부형태에 관한 연구 (Morphological Description of a Post Larva of Pomacanthus xanthometopon from the West Pacific)

  • 김성;이은경;유재명
    • 한국어류학회지
    • /
    • 제13권4호
    • /
    • pp.274-278
    • /
    • 2001
  • 청줄돔과 (Family Pomacanthidae)의 한 종인 Pomacanthus xanthometopon 후기자어의 외부형태를 관찰하였다. 표본은 2001년 5월 5일 서태평양 ($26^{\circ}9'N$, $125^{\circ}0'W$)에서 채집되었다. 표본의 체장은 8.0 mm였다. 몸은 현저히 옆으로 측편되어 있으며 체고는 체장의 66.3%였다. 항문은 등지느러미를 기준으로 8~9번째 극조의 하단부에 위치하였다. 2~4개로 구성된 소극이 몸 전체를 덮고 있었다. 성어에서 보이는 강한 전새개골극이 없었다. 점상의 흑색소포는 두정부, 목덜미, 몸통의 위쪽부분과 등지느러미의 1~11번째 극조의 지느러미막에 분포하였다.

  • PDF

국산 가래나무 간벌재활용을 위한 금속주입목재의 제조 및 특성 (Properties and Manufacturing of Low Melting Alloy Impregnated Wood Composites for using Domestic Thinned Logs of Juglans mandshurica)

  • 박계신;이화형
    • 농업과학연구
    • /
    • 제37권3호
    • /
    • pp.457-464
    • /
    • 2010
  • The low melting alloy impregnated wood composites with natural grain of thinned Juglans mandshurica was made and evaluated in this study. And the proper manufacturing conditions was also investigated in this study. The low melting alloy with bismuth(Bi) and tin(Sn) which are harmless to humans, was applied for this novel composites, which showed not only no defects of discoloration, delamination, swelling, and cracking, because of high dimensional stability and low thickness swelling, but also much improved performance such as high bending strength, high hardness, low abrasion, high thermal conductivity as floor materials. This study also suggested the proper impregnating condition, such as 10 minutes of the preliminary vacuum time, $187^{\circ}C$ of the heating temperature and 10 minutes of the maintaining pressure time at the pressure of 30kgf/$cm^2$. The produced composites showed 9 times higher density for small specimen, 6.6 times for actual size sample and great increase in bending strength from 102.05N/$mm^2$ to 189.47N/$mm^2$ for small size sample and to 205.4N/$mm^2$ for actual size sample, also great increase in hardness from 15.1N/$mm^2$ to 73.38N/$mm^2$ for small size sample and 64.87N/$mm^2$ for actual size sample. And the composites demonstrated great decrease in abrasion depth and in water absorption.

The effect of thermocycling on the bonding of different restorative materials to access opening through porcelain fused to metal restorations

  • Al-Moaleem, Mohammed M.;Shah, Farhan Khalid;Khan, Nausheen Saied;Porwal, Amit
    • The Journal of Advanced Prosthodontics
    • /
    • 제3권4호
    • /
    • pp.186-189
    • /
    • 2011
  • PURPOSE. Porcelain fused to metal (PFM) crowns provide the best treatment option for teeth that have a large or defective restoration. More than 20% of teeth with PFM crowns or bridges require non-surgical root canal treatment (NSRCT). This may be due to the effect of restorative procedures and the possible leakage of bacteria and or their by-products, which leads to the demise of the tooth pulp. Thus, this study was planned to compare the ability of the restorative materials to seal perforated PFM specimens. MATERIALS AND METHODS. The study evaluates the ability of amalgam, composite or compomer restorative materials to close perforated PFM specimen's in-vitro. Ninety PFM specimens were constructed using Ni-Cr alloys and feldspathic porcelain, and then they were divided into 3 groups: amalgam (A), composite + Exite adhesive bond (B) and compomer + Syntac adhesive bond (C). All the PFM samples were embedded in an acrylic block to provide complete sealing of the hole from the bottom side. After the aging period, each group was further divided into 3 equal subgroups according to the thermocycling period (one week for 70 cycles, one month for 300 cycles and three months for 900 cycles). Each subgroup was put into containers containing dye (Pelikan INK), one maintained at $5^{\circ}C$ and the other at $55^{\circ}C$, each cycle for 30 sec time. The data obtained was analyzed by SPSS, 2006 using one way ANOVA test and student t-test and significant difference level at (P<.01). RESULTS. The depth of dye penetration was measured at the interfaces of PFM and filling materials using Co-ordinate Vernier Microscope. The lowest levels of the dye penetration for the three groups, as well as subgroups were during the first week. The values of dye leakage had significantly increased by time intervals in subgroups A and C. CONCLUSION. It was seen that amalgam showed higher leakage than composite while compomer showed the lowest level of leakage.