• Title/Summary/Keyword: specific surface area

Search Result 1,580, Processing Time 0.031 seconds

Removal Properties of Methylene Blue using Biochar Prepared from Street Tree Pruning Branches and Household Wood Waste (가로수 전정가지 및 생활계 폐목재를 이용하여 제조한 바이오차의 Methylene Blue 흡착특성)

  • Do, Ji-Young;Kim, Dong-Su;Park, Kyung-Chul;Park, Sam-Bae;Chang, Yoon-Young;Yang, Jae-Kyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.3
    • /
    • pp.13-22
    • /
    • 2022
  • In order to improve water quality of the water system contaminated with dyes, biochars prepared using discarded waste resources were applied in this study. Biochars with a large specific surface area were manufactured using street tree pruning products or waste wood, and were applied to remove an organic dye in synthetic water. Biochars were made by pyrolysis of typical street tree porch products (Platanas, Ginkgo, Aak) and waste wood under air-controlled conditions. Methylene blue (MB), which is widely used in phosphofibers, paper, leather, and cotton media, was selected in this study. The adsorption capacity of Platanas for MB was the highest and the qmax value obtained using the Langmuir model equation was 78.47 mg/g. In addition, the adsorption energy (E) (kJ/mol) of MB using the Dubinin-Radushkevich (D-R) model equation was 4.891 kJ/mol which was less than 8 kJ/mol (a criteria distinguishing physical adsorption from chemical adsorption). This result suggests a physical adsorption with weak interactions such as van der Waals force between the biochar and MB. In addition, the physical adsorption may resulted from that Platanas-based biohar has the largest specific surface area and pore volume. The ∆G value obtained through the adsorption experiment according to temperature variation was -3.67 to -7.68, which also suggests a physical adsorption. Considering these adsorption results, the adsorption of MB onto Platanas-based biochar seems to occur through physical adsorption. Overall, it was possible to suggest that adsorption capacity of the biochr prepared from this study was equal to or greater than that of commercial activated carbon reported in other studies.

Key Methodologies to Effective Site-specific Accessment in Contaminated Soils : A Review (오염토양의 효과적 현장조사에 대한 주요 방법론의 검토)

  • Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.383-397
    • /
    • 1999
  • For sites to be investigated, the results of such an investigation can be used in determining foals for cleanup, quantifying risks, determining acceptable and unacceptable risk, and developing cleanup plans t hat do not cause unnecessary delays in the redevelopment and reuse of the property. To do this, it is essential that an appropriately detailed study of the site be performed to identify the cause, nature, and extent of contamination and the possible threats to the environment or to any people living or working nearby through the analysis of samples of soil and soil gas, groundwater, surface water, and sediment. The migration pathways of contaminants also are examined during this phase. Key aspects of cost-effective site assessment to help standardize and accelerate the evaluation of contaminated soils at sites are to provide a simple step-by-step methodology for environmental science/engineering professionals to calculate risk-based, site-specific soil levels for contaminants in soil. Its use may significantly reduce the time it takes to complete soil investigations and cleanup actions at some sites, as well as improve the consistency of these actions across the nation. To achieve the effective site assessment, it requires the criteria for choosing the type of standard and setting the magnitude of the standard come from different sources, depending on many factors including the nature of the contamination. A general scheme for site-specific assessment consists of sequential Phase I, II, and III, which is defined by workplan and soil screening levels. Phase I are conducted to identify and confirm a site's recognized environmental conditions resulting from past actions. If a Phase 1 identifies potential hazardous substances, a Phase II is usually conducted to confirm the absence, or presence and extent, of contamination. Phase II involve the collection and analysis of samples. And Phase III is to remediate the contaminated soils determined by Phase I and Phase II. However, important factors in determining whether a assessment standard is site-specific and suitable are (1) the spatial extent of the sampling and the size of the sample area; (2) the number of samples taken: (3) the strategy of taking samples: and (4) the way the data are analyzed. Although selected methods are recommended, application of quantitative methods is directed by users having prior training or experience for the dynamic site investigation process.

  • PDF

Response of Rice Yield to Nitrogen Application Rate under Variable Soil Conditions

  • Ahn Nguyen Tuan;Shin Jin Chul;Lee Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.4
    • /
    • pp.247-255
    • /
    • 2005
  • ice yield and plant growth response to nitrogen (N) fertilizer may vary within a field, probably due to spatially variable soil conditions. An experiment designed for studying the response of rice yield to different rates of N in combination with variable soil conditions was carried out at a field where spatial variation in soil properties, plant growth, and yield across the field was documented from our previous studies for two years. The field with area of 6,600 m2 was divided into six strips running east-west so that variable soil conditions could be included in each strip. Each strip was subjected to different N application level (six levels from 0 to 165kg/ha), and schematically divided into 12 grids $(10m \times10m\;for\;each\;grid)$ for sampling and measurement of plant growth and rice grain yield. Most of plant growth parameters and rice yield showed high variations even at the same N fertilizer level due to the spatially variable soil condition. However, the maximum plant growth and yield response to N fertilizer rate that was analyzed using boundary line analysis followed the Mitcherlich equation (negative exponential function), approaching a maximum value with increasing N fertilizer rate. Assuming the obtainable maximum rice yield is constrained by a limiting soil property, the following model to predict rice grain yield was obtained: $Y=10765{1-0.4704^*EXP(-0.0117^*FN)}^*MIN(I-{clay},\;I_{om},\;I_{cec},\;I_{TN},\; I_{Si})$ where FN is N fertilizer rate (kg/ha), I is index for subscripted soil properties, and MIN is an operator for selecting the minimum value. The observed and predicted yield was well fitted to 1:1 line (Y=X) with determination coefficient of 0.564. As this result was obtained in a very limited condition and did not explain the yield variability so high, this result may not be applied to practical N management. However, this approach has potential for quantifying the grain yield response to N fertilizer rate under variable soil conditions and formulating the site-specific N prescription for the management of spatial yield variability in a field if sufficient data set is acquired for boundary line analysis.

The Effect of Environmental Factors on the Advent of Chattonella (Raphidophyceae) in Yeosu Coastal Waters, Korea, and the Effect of Nutrients on the Growth of Chattonella (여수 연안해역에서 침편모조류 Chattonella속 출현환경 및 영양염에 대한 성장특성)

  • Noh, Il-Hyeon;Oh, Seok-Jin;Shin, Hyeon-Ho;Kang, In-Seok;Yoon, Yang-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.4
    • /
    • pp.362-372
    • /
    • 2010
  • In order to understand what leads to the appearance of harmful Chattonella algae in the Yeosu coastal waters of Korea, we measured environmental parameters every week at one station from May to November, 2006, and April to October, 2007. Four species of Chattonella appeared during the monitoring period: C. antiqua, C. globosa, C. marina and C. ovata. The range of water temperature and salinity were $15.0-27.9^{\circ}C$ and 17.6~33.0 psu, respectively, when Chattonella appeared, and their maximum cell density (4,840 cells/L) was at $27.1^{\circ}C$ and 33.0 psu. During the monitoring periods, the range of dissolved inorganic nitrogen (DIN), phosphate (DIP) and chlorophyll $\alpha$ (Chl-$\alpha$) concentrations in surface waters were $1.20-52.23\;{\mu}M$ ($8.59{\pm}8.97\;{\mu}M$), $0.03-1.56\;{\mu}M$ ($0.47{\pm}0.31\;{\mu}M$) and $0.45-31.12\;{\mu}g/L$ ($3.58{\pm}4.77\;{\mu}g/L$), respectively. Chattonella occurred at low cell density when the Chl-$\alpha$ concentration increased because of supplied nutrients, whereas their cell density increased during the periods of rapid decrease in Chl-$\alpha$. The results of growth experiments based on batch culture showed that the half saturation constant ($K_s$) of C. antiqua on ammonium (${NH_4}^-$), nitrate (${NO_3}^-$) and phosphate (${PO_4}^{2-}$) were $3.89{\mu}M$, $5.01\;{\mu}M$ and $0.63\;{\mu}M$, respectively. These Ks values are higher than those reported for diatoms and other flagellates at the DIP concentration (average $0.47{\mu}M$) of Yeosu coastal waters. Although the maximum specific growth rate (${\mu}_{max}$) of C. antiqua was lower than diatoms, it was higher than those of other flagellates. Therefore, our results indicate that the DIP level in the study area was too low to support Chattonella blooms, although Chattonella species have physiological characteristics that enable them to grow more rapidly than other flagellates when nutrient levels are higher than their $K_s$.

Preparation and Characterization of Demineralized Bone Particle Impregnated Poly(L-lactide) Scaffolds

  • Gilson Khang;Park, Chong-Soo;John M. Rhee;Lee, Sang-Jin;Lee, Young-Moo;Park, Myoung-Kyu;Lee, Hai-Bang;Lee, Ilwoo
    • Macromolecular Research
    • /
    • v.9 no.5
    • /
    • pp.267-276
    • /
    • 2001
  • In order to endow with new bioactive functionality from demineralized bone particle (DBP) as natural source to poly(L-lactide) (PLA) synthetic biodegradable polymer, porous DBP/PLA as natural/synthetic composite scaffolds were prepared and compared by means of the emulsion freeze drying and solvent casting/salt leaching methods for the possibility of the application of tissue engineered bone and cartilage. For the emulsion freeze drying method, it was observed that the pore size decreased in the order of 79$\mu\textrm{m}$ (PLA control) > 47$\mu\textrm{m}$ (20% of DBP) > 23 $\mu\textrm{m}$ (40% of DBP) > 15$\mu\textrm{m}$ (80% of DBP). Porosities as well as specific pore areas decreased with increasing the amount of DBR. It can be explained that DBP acts like emulsifier resulting in stabilizing water droplet in emulsion. For the solvent casting/salt leaching method, a uniform distribution of well interconnected pores from the surface to core region were observed the pore size of 80 ∼70 $\mu\textrm{m}$ independent with DBP amount. Porosities as well as specific pore areas also were almost same. For pore size distribution by the mercury intrusion porosimeter analysis between the two methods, the pore size distribution of the emulsion freeze drying method was broader than that of the solvent casting/salt leaching method due to the mechanism of emulsion formation. Scaffolds of PLA alone, DBP/PLA of 40 and 80%, and DBP powder were implanted on the back of athymic nude mouse to observe the effect of DBP on the induction of cells proliferation by hematoxylin and eosin staining for 8 weeks. It was observed that the effect of DBP/PLA scaffolds on bone induction are stronger than PLA scaffolds, even though the bone induction effect of DBP/PLA scaffold might be lowered than only DBP powder, that is to say, in the order of DBP only > DBP/PLA scaffolds of 40 and 80% DBP > PLA scaffolds only for osteoinduction activity. In conclusion, it seems that DBP plays an important role for bone induction in DBP/PLA scaffolds for the application of tissue engineering area.

  • PDF

Identification and Physical Characteristics of the Ancient Charcoals Excavated from Chudong-ri Site, Korea (서천 추동리 문화유적에서 채취된 숯의 수종식별과 물리적 특성)

  • Kim, Myung-Jin;Lee, Jong-Shin;Park, Soon-Bal
    • Journal of Conservation Science
    • /
    • v.24
    • /
    • pp.13-22
    • /
    • 2008
  • The identification of species, hygroscopic property, and ability of ethylene gas absorption of 23 ancient charcoals excavated from wooden coffin burials and roof-tile kilns of Chudong-ri cultural site were investigated. All of the 12 charcoals excavated from wooden coffin burials were broad-leaved trees. Among the total 12 samples, 9 samples were Lepidobalanus and others were Celtis spp.. On the other hand, other 11 charcoals from roof-tile kilns were needle-leaved tree, Pinus spp.(hard pine). The broad-leaved tree charcoals from wooden coffin burials showed a higher moisture absorption capacity than needle-leaved tree charcoals from roof-tile kilns. The ethylene gas absorption was greater in the Lepidobalanus charcoal than that of Celtis spp. and Pinus spp. (hard pine) charcoal. The broad-leaved tree charcoal having high absorption ability of substances was due to a large microporous and specific surface area. Therefore, it was estimated that broad-leaved tree charcoals were filled in order to make favorable condition in tomb. The wood quality of pine is soft and easy to burn because of low specific gravity, as well as high calorific value by resin in wood. We could assume that the pine wood was used as fuel for roof-tile kilns because of easy control of heating and thermal power.

  • PDF

Intrinsic Porous Polymer-derived 3D Porous Carbon Electrodes for Electrical Double Layer Capacitor Applications (전기이중층 커패시터용 내재적 미세 다공성 고분자 기반 3차원 다공성 탄소 전극)

  • Han, Jae Hee;Suh, Dong Hack;Kim, Tae-Ho
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.759-764
    • /
    • 2018
  • 3D porous carbon electrodes (cNPIM), prepared by solution casting of a polymer of intrinsic microporosity (PIM-1) followed by nonsolvent-induced phase separation (NIPS) and carbonization are presented. In order to effectively control the pore size of 3D porous carbon structures, cNPIM was prepared by varying the THF ratio of mixed solvents. The SEM analysis revealed that cNPIMs have a unique 3D macroporous structure having a gradient pore structure, which is expected to grant a smooth and easy ion transfer capability as an electrode material. In addition, the cNPIMs presented a very large specific surface area ($2,101.1m^2/g$) with a narrow micropore size distribution (0.75 nm). Consequently, the cNPIM exhibits a high specific capacitance (304.8 F/g) and superior rate capability of 77% in an aqueous electrolyte. We believe that our approach can provide a variety of new 3D porous carbon materials for the application to an electrochemical energy storage.

Building Information Modeling of Caves (CaveBIM) in Jeju Island at a Specific Site below a Road at Jaeamcheon Lava Tube and at a Broader Scale for Hallim Town (제주도 한림 재암천굴과 도로 교차구간의 CaveBIM 구축)

  • An, Joon-Sang;Kim, Wooram;Baek, Yong;Kim, Jin-Hwan;Lee, Jong-Hyun
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.449-466
    • /
    • 2022
  • The establishment of a complete geological model that includes information about all the various components at a site (such as underground structures and the compositions of rock and soil underground space) is difficult, and geological modeling is a developing field. This study uses commercial software for the relatively easy composition of geological models. Our digital modeling process integrates a model of Jeju Island's 3D geological information, models of cave shapes, and information on the state of a road at the site's upper surface. Among the numerous natural caves that exist in Jeju Island, we studied the Jaeamcheon lava tube near Hallim town, and the selected site lies below a road. We developed a digital model by applying the principles of building information modeling (BIM) to the cave (CaveBIM). The digital model was compiled through gathering and integrating specific data: relevant processes include modeling the cave's shape using a laser scanner, 3D geological modeling using geological information and geophysical exploration data, and modeling the surrounding area using drones. This study developed a global-scale model of the Hallim region and a local-scale model of the Jaeamcheon cave. Cross-validation was performed when constructing the LSM, and the results were compared and analyzed.

Review of Thermodynamic Sorption Model for Radionuclides on Bentonite Clay (벤토나이트와 방사성 핵종의 열역학적 수착 모델 연구)

  • Jeonghwan Hwang;Jung-Woo Kim;Weon Shik Han;Won Woo Yoon;Jiyong Lee;Seonggyu Choi
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.515-532
    • /
    • 2023
  • Bentonite, predominantly consists of expandable clay minerals, is considered to be the suitable buffering material in high-level radioactive waste disposal repository due to its large swelling property and low permeability. Additionally, the bentonite has large cation exchange capacity and specific surface area, and thus, it effectively retards the transport of leaked radionuclides to surrounding environments. This study aims to review the thermodynamic sorption models for four radionuclides (U, Am, Se, and Eu) and eight bentonites. Then, the thermodynamic sorption models and optimized sorption parameters were precisely analyzed by considering the experimental conditions in previous study. Here, the optimized sorption parameters showed that thermodynamic sorption models were related to experimental conditions such as types and concentrations of radionuclides, ionic strength, major competing cation, temperature, solid-to-liquid ratio, carbonate species, and mineralogical properties of bentonite. These results implied that the thermodynamic sorption models suggested by the optimization at specific experimental conditions had large uncertainty for application to various environmental conditions.

Sorption of Arsenite Using Nanosized Mackinawite (FeS)-Coated Silica Sand (나노 크기 매킨나와이트로 코팅된 규사를 이용한 아비산염의 흡착)

  • Lee, Seungyeol;Kang, Jung Chun;Park, Minji;Yang, Kyounghee;Jeong, Hoon Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.185-195
    • /
    • 2012
  • Due to the high reduction and sorption capacity as well as the large specific surface area, nanosized mackinawite (FeS) is useful in reductively transforming chlorinated organic pollutants and sequestering toxic metals and metalloids. Due to the dynamic nature in its colloid stability, however, nanosized FeS may be washed out with the groundwater flow or result in aquifer clogging via particle aggregation. Thus, these nanoparticles should be modified such as to be built into permeable reactive barriers. This study employed coating methods in efforts to facilitate the installation of permeable reactive barriers of nanosized mackinawite. In applying the methods, nanosized mackinawite was coated on non-treated silica sand (NTS) and chemically treated silica sand (CTS). For both silica sands, the maximum coating of mackinawite occurred around pH 5.4, the condition of which was governed by (1) the solubility of mackinawite and (2) the surface charge of both silica and mackinawite. Under this pH condition, the maximum coating by NTS and CTS were found to be 0.101 mmol FeS/g and 0.043 mmol FeS/g respectively, with such elevated coatings by NTS likely linked with impurities (e.g., iron oxides) on its surface. Arsenite sorption experiments were performed under anoxic conditions using uncoated silica sands and those coated with mackinawite at the optimal pH to compare their reactivity. At pH 7, the relative sorption efficiency between uncoated NTS and coated NTS changed with the initial concentration of arsenite. At the lower initial concentration, uncoated NTS showed the higher sorption efficiency, whereas at the higher concentration, coated NTS exhibited the higher sorption efficiency. This could be attributed to different sorption mechanisms as a function of arsenite concentration: the surface complexation of arsenite with the iron oxide impurity on silica sand at the low concentration and the precipitation as arsenic sulfides by reaction with mackinawite coating at the high concentration. Compared to coated NTS, coated CTS showed the lower arsenite removal at pH 7 due to its relatively lower mackinawite coating. Taken together, our results indicate that NTS is a more effective material than CTS for the coating of nanosized mackinawite.